cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349625 Dirichlet convolution of A000027 (identity function) with the Dirichlet inverse of A326042, where A326042(n) = A064989(sigma(A003961(n))).

This page as a plain text file.
%I A349625 #12 Nov 29 2021 14:29:29
%S A349625 1,1,1,-8,4,1,5,2,-22,4,6,-8,9,5,4,50,14,-22,17,-32,5,6,17,2,-13,9,20,
%T A349625 -40,28,4,14,-120,6,14,20,176,27,17,9,8,34,5,41,-48,-88,17,39,50,-46,
%U A349625 -13,14,-72,47,20,24,10,17,28,30,-32,48,14,-110,-1126,36,6,63,-112,17,20,40,-44,70,27,-13,-136,30,9,69
%N A349625 Dirichlet convolution of A000027 (identity function) with the Dirichlet inverse of A326042, where A326042(n) = A064989(sigma(A003961(n))).
%C A349625 Multiplicative because A000027 and A349623 are.
%H A349625 Antti Karttunen, <a href="/A349625/b349625.txt">Table of n, a(n) for n = 1..20000</a>
%H A349625 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A349625 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A349625 a(n) = Sum_{d|n} d * A349623(n/d).
%t A349625 f1[p_, e_] := NextPrime[p]^e; s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[2, e_] := 1; f2[p_, e_] := NextPrime[p, -1]^e; s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; s[n_] := s2[DivisorSigma[1, s1[n]]]; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := DivisorSum[n, # * sinv[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 27 2021 *)
%o A349625 (PARI)
%o A349625 A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
%o A349625 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A349625 A326042(n) = A064989(sigma(A003961(n)));
%o A349625 memoA349623 = Map();
%o A349625 A349623(n) = if(1==n,1,my(v); if(mapisdefined(memoA349623,n,&v), v, v = -sumdiv(n,d,if(d<n,A326042(n/d)*A349623(d),0)); mapput(memoA349623,n,v); (v)));
%o A349625 A349625(n) = sumdiv(n,d,d*A349623(n/d));
%Y A349625 Cf. A000203, A003961, A064989, A326042, A349623, A349624 (Dirichlet inverse).
%K A349625 sign,mult
%O A349625 1,4
%A A349625 _Antti Karttunen_, Nov 26 2021