cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349631 Dirichlet convolution of A003961 with A346479, which is Dirichlet inverse of A250469.

This page as a plain text file.
%I A349631 #19 Nov 29 2021 14:29:40
%S A349631 1,0,0,0,0,0,0,6,0,-6,0,12,0,-6,0,18,0,24,0,24,0,-24,0,0,0,-24,60,36,
%T A349631 0,48,0,42,-20,-42,0,-12,0,-42,-10,12,0,72,0,60,60,-48,0,-24,0,42,-30,
%U A349631 72,0,-84,0,12,-30,-78,0,-120,0,-72,120,126,0,180,0,96,-30,132,0,-48,0,-96,60,108,0,174,0,-84,120
%N A349631 Dirichlet convolution of A003961 with A346479, which is Dirichlet inverse of A250469.
%C A349631 Note that for n = 2..36, a(n) = -A349632(n).
%C A349631 Dirichlet convolution of this sequence with A347376 is A003972.
%H A349631 Antti Karttunen, <a href="/A349631/b349631.txt">Table of n, a(n) for n = 1..20000</a>
%H A349631 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A349631 <a href="/index/Si#sieve">Index entries for sequences generated by sieves</a>
%F A349631 a(n) = Sum_{d|n} A003961(d) * A346479(n/d).
%o A349631 (PARI)
%o A349631 up_to = 20000;
%o A349631 A020639(n) = if(1==n,n,vecmin(factor(n)[, 1]));
%o A349631 ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o A349631 v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
%o A349631 A078898(n) = v078898[n];
%o A349631 A250469(n) = if(1==n,n,my(spn = nextprime(1+A020639(n)), c = A078898(n), k = 0); while(c, k++; if((1==k)||(A020639(k)>=spn),c -= 1)); (k*spn));
%o A349631 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
%o A349631 v346479 = DirInverseCorrect(vector(up_to,n,A250469(n)));
%o A349631 A346479(n) = v346479[n];
%o A349631 A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
%o A349631 A349631(n) = sumdiv(n,d,A003961(d)*A346479(n/d));
%Y A349631 Cf. A003961, A250469, A346479, A349632 (Dirichlet inverse).
%Y A349631 Cf. also A003972, A347376, A349381.
%Y A349631 Cf. also arrays A083221, A246278, A249821, A249822 and permutations A250245, A250246.
%K A349631 sign
%O A349631 1,8
%A A349631 _Antti Karttunen_, Nov 27 2021