cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349632 Dirichlet convolution of A250469 with A346234, which is Dirichlet inverse of A003961.

This page as a plain text file.
%I A349632 #19 Nov 29 2021 14:29:56
%S A349632 1,0,0,0,0,0,0,-6,0,6,0,-12,0,6,0,-18,0,-24,0,-24,0,24,0,0,0,24,-60,
%T A349632 -36,0,-48,0,-42,20,42,0,12,0,42,10,-12,0,-72,0,-60,-60,48,0,24,0,-42,
%U A349632 30,-72,0,84,0,-12,30,78,0,120,0,72,-120,-90,0,-180,0,-96,30,-132,0,48,0,96,-60,-108,0,-174,0,12,-120
%N A349632 Dirichlet convolution of A250469 with A346234, which is Dirichlet inverse of A003961.
%C A349632 Note that for n = 2..36, a(n) = -A349631(n).
%C A349632 Dirichlet convolution of this sequence with A003972 is A347376.
%H A349632 Antti Karttunen, <a href="/A349632/b349632.txt">Table of n, a(n) for n = 1..20000</a>
%H A349632 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A349632 <a href="/index/Si#sieve">Index entries for sequences generated by sieves</a>
%F A349632 a(n) = Sum_{d|n} A250469(d) * A346234(n/d).
%o A349632 (PARI)
%o A349632 up_to = 20000;
%o A349632 A020639(n) = if(1==n,n,vecmin(factor(n)[, 1]));
%o A349632 ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o A349632 v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
%o A349632 A078898(n) = v078898[n];
%o A349632 A250469(n) = if(1==n,n,my(spn = nextprime(1+A020639(n)), c = A078898(n), k = 0); while(c, k++; if((1==k)||(A020639(k)>=spn),c -= 1)); (k*spn));
%o A349632 A346234(n) = (moebius(n)*A003961(n));
%o A349632 A349632(n) = sumdiv(n,d,A250469(n/d)*A346234(d));
%Y A349632 Cf. A003961, A250469, A346234, A349631 (Dirichlet inverse).
%Y A349632 Cf. also A003972, A347376, A349382.
%Y A349632 Cf. also arrays A083221, A246278, A249821, A249822 and permutations A250245, A250246.
%K A349632 sign
%O A349632 1,8
%A A349632 _Antti Karttunen_, Nov 27 2021