A349636 Primes that remain prime when a single "1" digit is inserted between any two adjacent digits.
13, 31, 37, 67, 79, 103, 109, 151, 163, 181, 193, 211, 241, 367, 457, 547, 571, 601, 613, 631, 709, 787, 811, 1117, 1213, 1831, 2017, 2683, 3019, 3319, 3391, 3511, 3517, 3607, 4519, 4999, 6007, 6121, 6151, 6379, 6673, 6871, 6991, 8293, 11119, 11317, 11467
Offset: 1
Examples
37 and 317 are prime; 2683 is prime, as are 21683, 26183, and 26813.
Links
- Martin Ehrenstein, Table of n, a(n) for n = 1..2004
Crossrefs
Programs
-
Mathematica
Select[Prime@Range[5,1500],(p=#;And@@PrimeQ[FromDigits/@(Insert[IntegerDigits@p,1,#]&/@Range[2,IntegerLength@p])])&] (* Giorgos Kalogeropoulos, Nov 23 2021 *)
-
Python
from sympy import isprime, primerange def ok(p): if p < 10: return False s = str(p) return all(isprime(int(s[:i] + "1" + s[i:])) for i in range(1, len(s))) def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)] print(aupto(12000)) # Michael S. Branicky, Nov 23 2021