This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349644 #12 Dec 05 2021 06:05:25 %S A349644 3,251,17,9843019,347,347,121174811,2903,2903,41 %N A349644 Array read by antidiagonals, n >= 2, m >= 0: T(n,m) is the smallest prime p = prime(k) such that all n-th differences of (prime(k), ..., prime(k+n+m)) are zero. %C A349644 T(n,m) = prime(k), where k is the smallest positive integer such that A095195(j,n) = 0 for k+n <= j <= k+n+m. %C A349644 Equivalently, T(n,m) is the smallest prime p = prime(k) such that there is a polynomial f of degree at most n-1 such that f(j) = prime(j) for k <= j <= k+n+m. %F A349644 T(n,m) <= T(n-1,m+1). %F A349644 T(n,m) <= T(n, m+1). %F A349644 Sum_{j=0..n} (-1)^j*binomial(n,j)*prime(k+i+j) = 0 for 0 <= i <= m, where prime(k) = T(n,m). %e A349644 Array begins: %e A349644 n\m| 0 1 2 3 4 %e A349644 ---+------------------------------------------------ %e A349644 2 | 3 251 9843019 121174811 ? %e A349644 3 | 17 347 2903 15373 128981 %e A349644 4 | 347 2903 15373 128981 19641263 %e A349644 5 | 41 8081 128981 19641263 245333213 %e A349644 6 | 211 128981 19641263 245333213 245333213 %e A349644 7 | 271 386471 81028373 245333213 27797667517 %e A349644 8 | 23 2022971 245333213 27797667517 ? %e A349644 9 | 191 7564091 10246420463 ? ? %o A349644 (Python) %o A349644 from sympy import nextprime %o A349644 def A349644(n,m): %o A349644 d = [float('inf')]*(n-1) %o A349644 p = [0]*(n+m)+[2] %o A349644 c = 0 %o A349644 while 1: %o A349644 del p[0] %o A349644 p.append(nextprime(p[-1])) %o A349644 d.insert(0,p[-1]-p[-2]) %o A349644 for i in range(1,n): %o A349644 d[i] = d[i-1]-d[i] %o A349644 if d.pop() == 0: %o A349644 if c == m: return p[0] %o A349644 c += 1 %o A349644 else: %o A349644 c = 0 %Y A349644 Cf. A006560 (row n=2), A349642 (row n=3), A349643 (column m=0). %Y A349644 Cf. A095195. %K A349644 nonn,tabl,hard,more %O A349644 2,1 %A A349644 _Pontus von Brömssen_, Nov 23 2021