This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349645 #35 Dec 28 2021 14:51:15 %S A349645 1,0,1,0,0,1,0,2,0,1,0,0,11,0,1,0,24,0,35,0,1,0,0,184,0,85,0,1,0,720, %T A349645 0,994,0,175,0,1,0,0,9708,0,4249,0,322,0,1,0,40320,0,72764,0,14889,0, %U A349645 546,0,1,0,0,648576,0,402380,0,44373,0,870,0,1 %N A349645 Triangular array read by rows: T(n,k) is the number of square n-permutations possessing exactly k cycles; n >= 0, 0 <= k <= n. %C A349645 A permutation p in S_n is a square if there exists q in S_n with q^2=p. %C A349645 For such a p, the number of cycles of any even length in its disjoint cycle decomposition must be even. %H A349645 Alois P. Heinz, <a href="/A349645/b349645.txt">Rows n = 0..200, flattened</a> %H A349645 Steven Finch, <a href="https://arxiv.org/abs/2111.14487">Rounds, Color, Parity, Squares</a>, arXiv:2111.14487 [math.CO], 2021. %e A349645 The three square 3-permutations are (1, 2, 3) with three cycles (fixed points) and (3, 1, 2) & (2, 3, 1), each with one cycle. %e A349645 Among the twelve square 4-permutations are {1, 4, 2, 3} & {1, 3, 4, 2} and {3, 4, 1, 2} & {4, 3, 2, 1}, all with two cycles but differing types. %e A349645 Triangle begins: %e A349645 [0] 1; %e A349645 [1] 0, 1; %e A349645 [2] 0, 0, 1; %e A349645 [3] 0, 2, 0, 1; %e A349645 [4] 0, 0, 11, 0, 1; %e A349645 [5] 0, 24, 0, 35, 0, 1; %e A349645 [6] 0, 0, 184, 0, 85, 0, 1; %e A349645 [7] 0, 720, 0, 994, 0, 175, 0, 1; %e A349645 [8] 0, 0, 9708, 0, 4249, 0, 322, 0, 1; %e A349645 ... %p A349645 with(combinat): %p A349645 b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, %p A349645 add(`if`(irem(i, 2)=0 and irem(j, 2)=1, 0, (i-1)!^j* %p A349645 multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1))*x^j, j=0..n/i)))) %p A349645 end: %p A349645 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): %p A349645 seq(T(n), n=0..12); # _Alois P. Heinz_, Nov 23 2021 %t A349645 multinomial[n_, k_List] := n!/Times @@ (k!); %t A349645 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, %t A349645 Sum[If[Mod[i, 2] == 0 && Mod[j, 2] == 1, 0, (i-1)!^j*multinomial[n, %t A349645 Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1]]*x^j, {j, 0, n/i}]]]]; %t A349645 T[n_] := With[{p = b[n, n]}, Table[Coefficient[p, x, i], {i, 0, n}]]; %t A349645 Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Dec 28 2021, after _Alois P. Heinz_ *) %Y A349645 Columns k=0-1 give: A000007, A005359(n-1). %Y A349645 Row sums give A003483. %Y A349645 T(n+2,n) gives A000914. %Y A349645 Cf. A214851, A246945. %K A349645 nonn,tabl %O A349645 0,8 %A A349645 _Steven Finch_, Nov 23 2021