This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349653 #26 Feb 16 2025 08:34:02 %S A349653 1,1,-4,51,-996,27120,-943602,40023354,-2002953432,115536775248, %T A349653 -7547711366880,550798542893808,-44409102801760584, %U A349653 3920444594317227600,-376109365694009875704,38961901445878423746360,-4334496557343337848950208,515407133679990302374396416 %N A349653 E.g.f. satisfies: A(x)^(A(x)^3) = 1/(1 - x). %H A349653 Seiichi Manyama, <a href="/A349653/b349653.txt">Table of n, a(n) for n = 0..336</a> %H A349653 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A349653 a(n) = (-1)^(n-1) * Sum_{k=0..n} (3*k-1)^(k-1) * Stirling1(n,k). %F A349653 E.g.f.: A(x) = -Sum_{k>=0} (3*k-1)^(k-1) * (log(1-x))^k / k!. %F A349653 E.g.f.: A(x) = ( -3*log(1-x)/LambertW(-3*log(1-x)) )^(1/3). %F A349653 a(n) ~ -(-1)^n * exp(1/6 - exp(-1)/6 - n) * n^(n-1) / (sqrt(3) * (-1 + exp(exp(-1)/3))^(n - 1/2)). - _Vaclav Kotesovec_, Nov 24 2021 %t A349653 nmax = 20; A[_] = 1; %t A349653 Do[A[x_] = (1/(1 - x))^(1/A[x]^3) + O[x]^(nmax+1) // Normal, {nmax}]; %t A349653 CoefficientList[A[x], x]*Range[0, nmax]! (* _Jean-François Alcover_, Mar 04 2024 *) %o A349653 (PARI) a(n) = (-1)^(n-1)*sum(k=0, n, (3*k-1)^(k-1)*stirling(n, k, 1)); %o A349653 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-sum(k=0, N, (3*k-1)^(k-1)*log(1-x)^k/k!))) %o A349653 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((-3*log(1-x)/lambertw(-3*log(1-x)))^(1/3))) %Y A349653 Cf. A349651, A349655, A349657. %Y A349653 Cf. A349561, A349652. %K A349653 sign %O A349653 0,3 %A A349653 _Seiichi Manyama_, Nov 23 2021