A349661 Number of ways to write n as x^4 + y^2 + (z^2 + 4^w)/2 with x,y,z,w nonnegative integers.
1, 3, 3, 2, 4, 5, 2, 2, 4, 5, 6, 4, 3, 6, 4, 1, 6, 7, 4, 6, 8, 5, 1, 4, 6, 10, 10, 3, 6, 10, 2, 3, 8, 6, 10, 10, 5, 6, 4, 5, 12, 14, 6, 5, 9, 6, 2, 3, 6, 12, 14, 7, 5, 8, 2, 7, 14, 6, 9, 9, 5, 9, 4, 2, 10, 15, 7, 7, 8, 7, 3, 5, 5, 7, 14, 5, 9, 9, 1, 4, 11, 8, 11, 13, 7, 13, 7, 2, 11, 17, 12, 8, 5, 6, 7, 5, 7, 11, 12, 8
Offset: 1
Keywords
Examples
a(1) = 1 with 1 = 0^4 + 0^2 + (1^2 + 4^0)/2. a(23) = 1 with 23 = 1^4 + 3^2 + (5^2 + 4^0)/2. a(79) = 1 with 79 = 1^4 + 2^2 + (12^2 + 4^1)/2. a(1199) = 1 with 1199 = 5^4 + 18^2 + (22^2 + 4^2)/2. a(3679) = 1 with 3679 = 5^4 + 2^2 + (78^2 + 4^2)/2. a(6079) = 1 with 6079 = 3^4 + 42^2 + (92^2 + 4^1)/2. a(33439) = 1 with 33439 = 1^4 + 175^2 + (75^2 + 4^0)/2. a(50399) = 1 with 50399 = 13^4 + 135^2 + (85^2 + 4^0)/2. a(207439) = 1 with 207439 = 1^4 + 142^2 + (612^2 + 4^1)/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167--190.
- Zhi-Wei Sun, Restricted sums of four squares, Int. J. Number Theory 15(2019), 1863-1893. See also arXiv:1701.05868 [math.NT].
- Zhi-Wei Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute of Technology Press, 2021.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[2(n-x^4-y^2)-4^z],r=r+1],{x,0,(n-1)^(1/4)},{y,0,Sqrt[n-1-x^4]},{z,0,Log[4,2(n-x^4-y^2)]}];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments