This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349665 #29 Dec 25 2021 09:44:27 %S A349665 0,1,2,3,7,17,27,37,87,137,157,187,247,437,687,787,937,1237,2187,3437, %T A349665 3937,4687,6187,8437,10937,17187,19687,23437,30937,42187,54687,55687, %U A349665 85937,98437,117187,154687,210937,223437,273437,278437,304687,429687,492187,585937 %N A349665 Record terms of A349664. %C A349665 Terms are the record numbers of solutions for the equation: y^4 = z^2 - x^2. %H A349665 Karl-Heinz Hofmann, <a href="/A349665/a349665.txt">Full table up to y <= 10^12</a> %e A349665 Number of | y | Factorization %e A349665 solutions | | of y %e A349665 ----------+---+-------------- %e A349665 0 | 1 | - %e A349665 1 | 2 | [2] %e A349665 2 | 3 | [3] %e A349665 3 | 4 | [2, 2] %e A349665 7 | 6 | [2, 3] %e A349665 : : : %e A349665 For more terms with y and factorization of y see link. %o A349665 (PARI) lista(nn) = my(f, r); print1("0, 1, 2"); forstep(n=4, nn, 2, f=factor(n)[, 2]; if(r<f=prod(k=2, #f, 4*f[k]+1)*(4*f[1]-1), print1(", ", (r=f)\2))); \\ _Jinyuan Wang_, Dec 19 2021 %Y A349665 Cf. A000290, A000583, A002144, A002145, A271576, A346115, A349663. %K A349665 nonn %O A349665 1,3 %A A349665 _Karl-Heinz Hofmann_, Dec 18 2021 %E A349665 More terms from _Jinyuan Wang_, Dec 19 2021