cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349665 Record terms of A349664.

This page as a plain text file.
%I A349665 #29 Dec 25 2021 09:44:27
%S A349665 0,1,2,3,7,17,27,37,87,137,157,187,247,437,687,787,937,1237,2187,3437,
%T A349665 3937,4687,6187,8437,10937,17187,19687,23437,30937,42187,54687,55687,
%U A349665 85937,98437,117187,154687,210937,223437,273437,278437,304687,429687,492187,585937
%N A349665 Record terms of A349664.
%C A349665 Terms are the record numbers of solutions for the equation: y^4 = z^2 - x^2.
%H A349665 Karl-Heinz Hofmann, <a href="/A349665/a349665.txt">Full table up to y <= 10^12</a>
%e A349665 Number of | y | Factorization
%e A349665 solutions |   |      of y
%e A349665 ----------+---+--------------
%e A349665         0 | 1 |  -
%e A349665         1 | 2 | [2]
%e A349665         2 | 3 | [3]
%e A349665         3 | 4 | [2, 2]
%e A349665         7 | 6 | [2, 3]
%e A349665         :   :      :
%e A349665 For more terms with y and factorization of y see link.
%o A349665 (PARI) lista(nn) = my(f, r); print1("0, 1, 2"); forstep(n=4, nn, 2, f=factor(n)[, 2]; if(r<f=prod(k=2, #f, 4*f[k]+1)*(4*f[1]-1), print1(", ", (r=f)\2))); \\ _Jinyuan Wang_, Dec 19 2021
%Y A349665 Cf. A000290, A000583, A002144, A002145, A271576, A346115, A349663.
%K A349665 nonn
%O A349665 1,3
%A A349665 _Karl-Heinz Hofmann_, Dec 18 2021
%E A349665 More terms from _Jinyuan Wang_, Dec 19 2021