This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349667 #30 Jan 03 2022 17:14:27 %S A349667 13,17,29,37,41,53,61,89,97,101,109,137,149,157,181,197,229,241,257, %T A349667 269,277,281,349,389,397,409,421,449,461,509,577,617,661,677,701,757, %U A349667 761,769,809,829,853,857,881,941,977,1009,1021,1049,1061,1069,1097,1109,1117,1181 %N A349667 Primes of the form 4*k+1 which are a prime after the Collatz step *3+1 and a maximal reduction by 2. %C A349667 Pythagorean primes (A002144) of the form 4*k+1 have, after the Collatz step *3+1, at least 2 or more factors 2. (See also A349666). %H A349667 Karl-Heinz Hofmann, <a href="/A349667/b349667.txt">Table of n, a(n) for n = 1..10000</a> %e A349667 a(41) = 853; 853*3+1 = 2560; then dividing 9 times by 2 = 5, a prime. %t A349667 f[n_] := n/2^IntegerExponent[n, 2]; q[n_] := PrimeQ[n] && PrimeQ[f[3*n + 1]]; Select[4 * Range[300] + 1, q] (* _Amiram Eldar_, Jan 03 2022 *) %o A349667 (Python) %o A349667 from sympy import isprime %o A349667 for p in range(1,10000,4): %o A349667 if isprime(p): %o A349667 p2 = (3 * p + 1) %o A349667 while p2 % 2 == 0: p2 //= 2 %o A349667 if isprime(p2): print(p, end=", ") %Y A349667 Cf. A002144, A002145, A349666. %K A349667 nonn %O A349667 1,1 %A A349667 _Karl-Heinz Hofmann_, Dec 28 2021