cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349667 Primes of the form 4*k+1 which are a prime after the Collatz step *3+1 and a maximal reduction by 2.

This page as a plain text file.
%I A349667 #30 Jan 03 2022 17:14:27
%S A349667 13,17,29,37,41,53,61,89,97,101,109,137,149,157,181,197,229,241,257,
%T A349667 269,277,281,349,389,397,409,421,449,461,509,577,617,661,677,701,757,
%U A349667 761,769,809,829,853,857,881,941,977,1009,1021,1049,1061,1069,1097,1109,1117,1181
%N A349667 Primes of the form 4*k+1 which are a prime after the Collatz step *3+1 and a maximal reduction by 2.
%C A349667 Pythagorean primes (A002144) of the form 4*k+1 have, after the Collatz step *3+1, at least 2 or more factors 2. (See also A349666).
%H A349667 Karl-Heinz Hofmann, <a href="/A349667/b349667.txt">Table of n, a(n) for n = 1..10000</a>
%e A349667 a(41) = 853; 853*3+1 = 2560; then dividing 9 times by 2 = 5, a prime.
%t A349667 f[n_] := n/2^IntegerExponent[n, 2]; q[n_] := PrimeQ[n] && PrimeQ[f[3*n + 1]]; Select[4 * Range[300] + 1, q] (* _Amiram Eldar_, Jan 03 2022 *)
%o A349667 (Python)
%o A349667 from sympy import isprime
%o A349667 for p in range(1,10000,4):
%o A349667     if isprime(p):
%o A349667         p2 = (3 * p + 1)
%o A349667         while p2 % 2 == 0: p2 //= 2
%o A349667         if isprime(p2): print(p, end=", ")
%Y A349667 Cf. A002144, A002145, A349666.
%K A349667 nonn
%O A349667 1,1
%A A349667 _Karl-Heinz Hofmann_, Dec 28 2021