A349670 Number of iterations x -> (x-1)/2 needed to get 1, 2 or a composite number, when starting with prime(n).
0, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
47 -> 23 -> 11 -> 5 -> 2 (prime(15) -> prime(9) -> prime(5) -> prime(3) -> prime(1)), hence a(1) = 0, a(3) = 1, a(5) = 2, a(9) = 3, a(15) = 4. 7 -> 3 -> 1 (prime(4) -> prime(2) -> 1), hence a(2) = 1, a(4) = 2. 59 -> 29 -> 14 (prime(17) -> prime(10) -> 14), hence a(10) = 1, a(17) = 2.
Programs
-
Mathematica
a[n_] := -1 + Length @ NestWhileList[(# - 1)/2 &, Prime[n], OddQ[#] && PrimeQ[#] &]; Array[a, 90] (* Amiram Eldar, Nov 27 2021 *)
-
PARI
a(n) = my(p=prime(n), k=0); while(isprime(m = (p+1)>>k - 1) && m != 2, k++); k
Comments