cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349671 Number of iterations x -> (x+1)/2 needed to get 2 or a composite number, when starting with prime(n).

Original entry on oeis.org

0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Jianing Song, Nov 24 2021

Keywords

Comments

a(n) is the least k such that (prime(n) - 1)/2^k + 1 is 2 or a composite number. It follows that a(n) <= v2(prime(n) - 1), v2 = A007814.
For prime(n) != 3, a(n) > 1 if and only if (prime(n)+1)/2 is prime (A005383).

Examples

			5 -> 3 -> 2 (prime(3) -> prime(2) -> prime(1)), hence a(1) = 0, a(2) = 1, a(3) = 2.
13 -> 7 -> 4 (prime(6) -> prime(4) -> 4), hence a(4) = 1, a(6) = 2.
73 -> 37 -> 19 -> 10 (prime(21) -> prime(12) -> prime(8) -> 10), hence a(8) = 1, a(12) = 2, a(21) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := -1 + Length @ NestWhileList[(# + 1)/2 &, Prime[n], # == 1 || (OddQ[#] && PrimeQ[#]) &]; Array[a, 90] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    a(n) = my(p=prime(n), k=0); while(isprime(m = (p-1)>>k + 1) && m != 2, k++); k