cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349687 Numbers whose numerator and denominator of their abundancy index are both Fibonacci numbers.

This page as a plain text file.
%I A349687 #17 Nov 30 2021 04:54:55
%S A349687 1,2,6,15,24,26,28,84,90,96,120,270,330,496,672,1335,1488,1540,1638,
%T A349687 8128,24384,27280,44109,68200,131040,447040,523776,18506880,22256640,
%U A349687 33550336,36197280,38257095,65688320,91963648,95472000,100651008,102136320,176432256,197308800
%N A349687 Numbers whose numerator and denominator of their abundancy index are both Fibonacci numbers.
%C A349687 This sequence includes all the perfect numbers (A000396), 3-perfect numbers (A005820) and 5-perfect numbers (A046060).
%C A349687 The deficient terms, 1, 2, 15, 26, 1335, 44109, 38257095, ..., have an abundancy index which is a ratio of two consecutive Fibonacci numbers, 1/1, 3/2, 8/5, 21/13, 144/89, 610/377, 46368/28657, ..., which approaches the golden ratio phi = 1.618... (A001622) as the numerators and denominators get larger.
%H A349687 Michel Marcus, <a href="/A349687/a349687.txt">85 terms</a> (some terms might be missing in this list).
%e A349687 2 is a term since sigma(2)/2 = 3/2 = Fibonacci(4)/Fibonacci(3).
%e A349687 15 is a term since sigma(15)/15 = 8/5 = Fibonacci(6)/Fibonacci(5).
%t A349687 fibQ[n_] := Or @@ IntegerQ /@ Sqrt[{5 n^2 - 4, 5 n^2 + 4}]; ai[n_] := DivisorSigma[1, n]/n; q[n_] := fibQ[Numerator[(ain = ai[n])]] && fibQ[Denominator[ain]]; Select[Range[10^6], q]
%o A349687 (PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
%o A349687 isok(n) = my(q=sigma(n)/n); isfib(numerator(q)) && isfib(denominator(q)); \\ _Michel Marcus_, Nov 25 2021
%Y A349687 Cf. A000045, A010056, A000203, A001622, A017665, A017666.
%Y A349687 Subsequences: A000396, A005820, A046060.
%Y A349687 Similar sequences: A069070, A216780, A247086, A348658.
%K A349687 nonn
%O A349687 1,2
%A A349687 _Amiram Eldar_, Nov 25 2021