This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349691 #12 Aug 28 2023 08:20:46 %S A349691 1,2,9,176,155,2450,21500,118993,767700,12409639,56024339,857777653, %T A349691 8648737607 %N A349691 a(n) is the least number k such that the continued fraction of the abundancy index of k contains n elements that are all distinct, or -1 if no such k exists. %C A349691 a(14) > 4*10^10, if it exists. %e A349691 The elements of the continued fractions of the abundancy index of the first 13 terms are: %e A349691 n a(n) elements %e A349691 -- ---------- ----------------------------- %e A349691 1 1 1 %e A349691 2 2 1,2 %e A349691 3 9 1,2,4 %e A349691 4 176 2,8,1,4 %e A349691 5 155 1,4,5,3,2 %e A349691 6 2450 2,6,9,8,1,4 %e A349691 7 21500 2,4,3,1,6,9,5 %e A349691 8 118993 1,6,5,2,13,3,10,4 %e A349691 9 767700 3,7,4,6,12,10,5,1,2 %e A349691 10 12409639 1,10,12,6,3,2,4,14,5,7 %e A349691 11 56024339 1,6,12,4,8,5,9,3,7,10,2 %e A349691 12 857777653 1,14,3,5,12,4,6,2,7,9,10,8 %e A349691 13 8648737607 1,12,6,13,2,4,10,7,11,3,9,8,5 %t A349691 cflen[n_] := Module[{cf = ContinuedFraction[DivisorSigma[1, n]/n], len}, If[(len = Length[cf]) == Length[DeleteDuplicates[cf]], len, 0]]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = cflen[n]; If[i > 0 && i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; TakeWhile[s, # > 0 &]]; seq[9, 10^6] %o A349691 (PARI) isok(k, n) = my(v=contfrac(sigma(k)/k)); (#v == n) && (#Set(v) == n); %o A349691 a(n) = my(k=1); while (!isok(k, n), k++); k; \\ _Michel Marcus_, Nov 25 2021 %Y A349691 Cf. A349503, A349685, A349690. %K A349691 nonn,more %O A349691 1,2 %A A349691 _Amiram Eldar_, Nov 25 2021