cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349694 Dirichlet convolution of the squarefree kernel function (A007947) with itself.

This page as a plain text file.
%I A349694 #14 Nov 26 2021 07:26:50
%S A349694 1,4,6,8,10,24,14,12,15,40,22,48,26,56,60,16,34,60,38,80,84,88,46,72,
%T A349694 35,104,24,112,58,240,62,20,132,136,140,120,74,152,156,120,82,336,86,
%U A349694 176,150,184,94,96,63,140,204,208,106,96,220,168,228,232,118,480
%N A349694 Dirichlet convolution of the squarefree kernel function (A007947) with itself.
%F A349694 Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + p^(1-s) - p^(-s))^2.
%F A349694 a(n) = Sum_{d|n} A007947(d) * A007947(n/d).
%F A349694 a(n) = Sum_{d|n} abs(A097945(d)) * A191750(n/d).
%F A349694 Multiplicative with a(p^e) = (e-1)*p^2 + 2*p. - _Amiram Eldar_, Nov 25 2021
%F A349694 From _Vaclav Kotesovec_, Nov 26 2021: (Start)
%F A349694 Dirichlet g.f.: zeta(s-1)^2 * zeta(s)^2 * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s))^2.
%F A349694 Let f(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)), then
%F A349694 Sum_{k=1..n} a(k) ~ Pi^2 * f(2)^2 * n^2 / 144 * (Pi^2 * (2*log(n) + 4*gamma - 1 + 4*f'(2)/f(2)) + 24*zeta'(2)), where f(2) = Product_{primes p} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298513355936144..., f'(2) = f(2) * Sum_{primes p} log(p) * (3*p - 2) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407300858..., zeta'(2) = -A073002 and gamma is the Euler-Mascheroni constant A001620. (End)
%t A349694 Table[Sum[Last[Select[Divisors[d], SquareFreeQ]] Last[Select[Divisors[n/d], SquareFreeQ]], {d, Divisors[n]}], {n, 1, 60}]
%t A349694 f[p_, e_] := (e - 1)*p^2 + 2*p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* _Amiram Eldar_, Nov 25 2021 *)
%o A349694 (PARI)
%o A349694 A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
%o A349694 A349694(n) = sumdiv(n,d,A007947(n/d)*A007947(d)); \\ _Antti Karttunen_, Nov 25 2021
%Y A349694 Cf. A007947, A097945, A176345, A191750.
%K A349694 nonn,mult
%O A349694 1,2
%A A349694 _Ilya Gutkovskiy_, Nov 25 2021