This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349694 #14 Nov 26 2021 07:26:50 %S A349694 1,4,6,8,10,24,14,12,15,40,22,48,26,56,60,16,34,60,38,80,84,88,46,72, %T A349694 35,104,24,112,58,240,62,20,132,136,140,120,74,152,156,120,82,336,86, %U A349694 176,150,184,94,96,63,140,204,208,106,96,220,168,228,232,118,480 %N A349694 Dirichlet convolution of the squarefree kernel function (A007947) with itself. %F A349694 Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + p^(1-s) - p^(-s))^2. %F A349694 a(n) = Sum_{d|n} A007947(d) * A007947(n/d). %F A349694 a(n) = Sum_{d|n} abs(A097945(d)) * A191750(n/d). %F A349694 Multiplicative with a(p^e) = (e-1)*p^2 + 2*p. - _Amiram Eldar_, Nov 25 2021 %F A349694 From _Vaclav Kotesovec_, Nov 26 2021: (Start) %F A349694 Dirichlet g.f.: zeta(s-1)^2 * zeta(s)^2 * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s))^2. %F A349694 Let f(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)), then %F A349694 Sum_{k=1..n} a(k) ~ Pi^2 * f(2)^2 * n^2 / 144 * (Pi^2 * (2*log(n) + 4*gamma - 1 + 4*f'(2)/f(2)) + 24*zeta'(2)), where f(2) = Product_{primes p} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298513355936144..., f'(2) = f(2) * Sum_{primes p} log(p) * (3*p - 2) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407300858..., zeta'(2) = -A073002 and gamma is the Euler-Mascheroni constant A001620. (End) %t A349694 Table[Sum[Last[Select[Divisors[d], SquareFreeQ]] Last[Select[Divisors[n/d], SquareFreeQ]], {d, Divisors[n]}], {n, 1, 60}] %t A349694 f[p_, e_] := (e - 1)*p^2 + 2*p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* _Amiram Eldar_, Nov 25 2021 *) %o A349694 (PARI) %o A349694 A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947 %o A349694 A349694(n) = sumdiv(n,d,A007947(n/d)*A007947(d)); \\ _Antti Karttunen_, Nov 25 2021 %Y A349694 Cf. A007947, A097945, A176345, A191750. %K A349694 nonn,mult %O A349694 1,2 %A A349694 _Ilya Gutkovskiy_, Nov 25 2021