This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349699 #12 Nov 27 2021 06:49:19 %S A349699 496,3321,13203,195625,780625,2883601,11527201,107186761,407879641, %T A349699 3487920481,39155632561,250123560121,47622568443841,95853663421561, %U A349699 322876778328721,403230060146161,3034217580863041,6333850463213521,13292221046055841,25335401515201441 %N A349699 Triangular numbers with exactly 10 divisors. %C A349699 All terms are of the form p^4 * q, with primes p < q. %C A349699 a(3) = 13203 = 3^4 * 163 is the only term for which q = 2*p^4 + 1; for all other terms, q is either 2*p^4 - 1 (e.g., a(1) = 496 = 2^4 * 31) or (p^4 + 1)/2 (e.g., a(2) = 3321 = 3^4 * 41). %H A349699 Jon E. Schoenfield, <a href="/A349699/b349699.txt">Table of n, a(n) for n = 1..10000</a> %e A349699 Table showing the first 20 terms and their prime factorizations. Because of the different relationships between the prime factors p and q for different terms (see Comments), neither the values of p nor those of q are nondecreasing. %e A349699 . %e A349699 n a(n) = p^4 * q %e A349699 -- ------------------------------------- %e A349699 1 496 = 2^4 * 31 %e A349699 2 3321 = 3^4 * 41 %e A349699 3 13203 = 3^4 * 163 %e A349699 4 195625 = 5^4 * 313 %e A349699 5 780625 = 5^4 * 1249 %e A349699 6 2883601 = 7^4 * 1201 %e A349699 7 11527201 = 7^4 * 4801 %e A349699 8 107186761 = 11^4 * 7321 %e A349699 9 407879641 = 13^4 * 14281 %e A349699 10 3487920481 = 17^4 * 41761 %e A349699 11 39155632561 = 23^4 * 139921 %e A349699 12 250123560121 = 29^4 * 353641 %e A349699 13 47622568443841 = 47^4 * 9759361 %e A349699 14 95853663421561 = 61^4 * 6922921 %e A349699 15 322876778328721 = 71^4 * 12705841 %e A349699 16 403230060146161 = 73^4 * 14199121 %e A349699 17 3034217580863041 = 79^4 * 77900161 %e A349699 18 6333850463213521 = 103^4 * 56275441 %e A349699 19 13292221046055841 = 113^4 * 81523681 %e A349699 20 25335401515201441 = 103^4 * 225101761 %t A349699 t[n_] := n*(n + 1)/2; Select[t /@ Range[10^5], DivisorSigma[0, #] == 10 &] (* _Amiram Eldar_, Nov 26 2021 *) %o A349699 (PARI) select(x->(numdiv(x)==10), vector(10^5, k, k*(k+1)/2)) \\ _Michel Marcus_, Nov 26 2021 %Y A349699 Cf. A000005, A000217, A030628, A178739. %K A349699 nonn %O A349699 1,1 %A A349699 _Jon E. Schoenfield_, Nov 25 2021