cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349702 Irregular triangle read by rows where T(n,k) is the maximum terminal Wiener index for a tree of n vertices among which k are leaves.

This page as a plain text file.
%I A349702 #13 Nov 28 2021 01:20:15
%S A349702 0,0,1,2,3,6,4,8,12,5,10,16,20,6,12,20,26,30,7,14,24,32,39,42,8,16,28,
%T A349702 38,48,54,56,9,18,32,44,57,66,72,72,10,20,36,50,66,78,88,92,90,11,22,
%U A349702 40,56,75,90,104,112,115,110,12,24,44,62,84,102,120,132,140,140,132
%N A349702 Irregular triangle read by rows where T(n,k) is the maximum terminal Wiener index for a tree of n vertices among which k are leaves.
%C A349702 Gutman, Furtula, and Petrović, define the terminal Wiener index as the sum of the distances between all pairs of leaves (pendant vertices, degree 1) in a tree (or graph).
%C A349702 They determine the maximum terminal Wiener index T(n,k), and construct the trees which attain this maximum.
%C A349702 The triangle rows are all possible n,k combinations, which means k=n in rows n=0..2, and k=2..n-1 in rows n>=3.
%C A349702 The maximum within row n is A349704(n) and for n >= 8 this occurs at kmax = floor(2*n/3)+2 = A004523(n)+2 and equal maximum at kmax+1 when n == 1 (mod 3).
%H A349702 Kevin Ryde, <a href="/A349702/b349702.txt">Table of n, a(n) for n = 0..7023</a> (rows 0..120)
%H A349702 Ivan Gutman, Boris Furtula and Miroslav Petrović, <a href="https://doi.org/10.1007/s10910-008-9476-2">Terminal Wiener Index</a>, Journal of Mathematical Chemistry, volume 46, 2009, pages 522-531.
%F A349702 T(n,k) = k*(k-1) + (n-1-k)*floor(k/2)*ceiling(k/2). [Gutman, Furtula, Petrović, theorem 4]
%F A349702 G.f.: x^2*y^2*( 1 + x*(1 + (1-x)*(1+2*x*y)) / ((1-x)^2 * (1+x*y) * (1-x*y)^3) ).
%e A349702 Triangle begins:
%e A349702       k=0  1  2   3   4   5   6   7   8
%e A349702   n=0;  0,
%e A349702   n=1;     0,
%e A349702   n=2;        1,
%e A349702   n=3;        2,
%e A349702   n=4;        3,  6,
%e A349702   n=5;        4,  8, 12,
%e A349702   n=6;        5, 10, 16, 20,
%e A349702   n=7;        6, 12, 20, 26, 30,
%e A349702   n=8;        7, 14, 24, 32, 39, 42,
%e A349702   n=9;        8, 16, 28, 38, 48, 54, 56,
%o A349702 (PARI) T(n,k) = (((n-k+3)*k - 4)*k + if(k%2,k-n+1))>>2;
%Y A349702 Cf. A349703 (number of trees), A349704 (row maxima).
%K A349702 easy,nonn,tabf
%O A349702 0,4
%A A349702 _Kevin Ryde_, Nov 26 2021