This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349703 #12 Nov 28 2021 01:20:18 %S A349703 1,1,1,1,1,1,1,1,1,1,2,1,1,1,3,1,1,1,1,4,1,2,1,1,1,5,1,2,1,1,1,1,7,1, %T A349703 3,1,2,1,1,1,8,1,3,1,2,1,1,1,1,10,1,4,1,3,1,2,1,1,1,12,1,4,1,3,1,2,1, %U A349703 1,1,1,14,1,5,1,4,1,3,1,2,1,1,1,16,1,5,1,4,1,3,1,2,1,1,1 %N A349703 Irregular triangle read by rows where T(n,k) is the number of free trees attaining the maximum terminal Wiener index (A349702) for a tree of n vertices among which k are leaves. %C A349703 Gutman, Furtula, and Petrović determine the maximum terminal Wiener index (A349702) possible in trees, and construct the trees which attain this maximum. %C A349703 The triangle rows are all possible n,k combinations, which means k=n in rows n=0..2, and k=2..n-1 in rows n>=3. %C A349703 For k even, a unique tree has the maximum index. %C A349703 For k=3, all trees have the same index. %H A349703 Kevin Ryde, <a href="/A349703/b349703.txt">Table of n, a(n) for n = 0..9593</a> (rows 0..140) %H A349703 Ivan Gutman, Boris Furtula and Miroslav Petrović, <a href="https://doi.org/10.1007/s10910-008-9476-2">Terminal Wiener Index</a>, Journal of Mathematical Chemistry, volume 46, 2009, pages 522-531. %F A349703 T(n,3) = A055290(n,3) = A001399(n-4) = round((n-1)^2 / 12). %F A349703 T(n,k) = 1 for k even. [Gutman, Furtula, Petrović, theorem 4 (a)] %F A349703 T(n,k) = ceiling((n-k)/2) for odd k >= 5. [Gutman, Furtula, Petrović, theorem 4 (b)] %F A349703 G.f.: 1 + x*y + ( x^2*y^2 + ( x^4*y^3/(1-x^3) + x^5*y^4*(1+x*y-x^2)/(1-x^2*y^2) )/(1-x^2) )/(1-x). %e A349703 Triangle begins %e A349703 k=0 1 2 3 4 5 6 7 8 %e A349703 n=0; 1, %e A349703 n=1; 1, %e A349703 n=2; 1, %e A349703 n=3; 1, %e A349703 n=4; 1, 1, %e A349703 n=5; 1, 1, 1, %e A349703 n=6; 1, 2, 1, 1, %e A349703 n=7; 1, 3, 1, 1, 1, %e A349703 n=8; 1, 4, 1, 2, 1, 1, %e A349703 n=9; 1, 5, 1, 2, 1, 1, 1, %e A349703 For n=9,k=5, the T(9,5) = 2 trees are %e A349703 *--*--*--*--*--* *--*--*--*--*--* %e A349703 /| \ / | \ %e A349703 * * * * * * %o A349703 (PARI) T(n,k) = if(n==1||k%2==0,1, k==3,(n-1)^2\/12, (n-k+1)>>1); %Y A349703 Cf. A349702 (maximum index), A055290 (count all trees), A001399 (trees k=3 leaves). %K A349703 easy,nonn,tabf %O A349703 0,11 %A A349703 _Kevin Ryde_, Nov 26 2021