cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349703 Irregular triangle read by rows where T(n,k) is the number of free trees attaining the maximum terminal Wiener index (A349702) for a tree of n vertices among which k are leaves.

This page as a plain text file.
%I A349703 #12 Nov 28 2021 01:20:18
%S A349703 1,1,1,1,1,1,1,1,1,1,2,1,1,1,3,1,1,1,1,4,1,2,1,1,1,5,1,2,1,1,1,1,7,1,
%T A349703 3,1,2,1,1,1,8,1,3,1,2,1,1,1,1,10,1,4,1,3,1,2,1,1,1,12,1,4,1,3,1,2,1,
%U A349703 1,1,1,14,1,5,1,4,1,3,1,2,1,1,1,16,1,5,1,4,1,3,1,2,1,1,1
%N A349703 Irregular triangle read by rows where T(n,k) is the number of free trees attaining the maximum terminal Wiener index (A349702) for a tree of n vertices among which k are leaves.
%C A349703 Gutman, Furtula, and Petrović determine the maximum terminal Wiener index (A349702) possible in trees, and construct the trees which attain this maximum.
%C A349703 The triangle rows are all possible n,k combinations, which means k=n in rows n=0..2, and k=2..n-1 in rows n>=3.
%C A349703 For k even, a unique tree has the maximum index.
%C A349703 For k=3, all trees have the same index.
%H A349703 Kevin Ryde, <a href="/A349703/b349703.txt">Table of n, a(n) for n = 0..9593</a> (rows 0..140)
%H A349703 Ivan Gutman, Boris Furtula and Miroslav Petrović, <a href="https://doi.org/10.1007/s10910-008-9476-2">Terminal Wiener Index</a>, Journal of Mathematical Chemistry, volume 46, 2009, pages 522-531.
%F A349703 T(n,3) = A055290(n,3) = A001399(n-4) = round((n-1)^2 / 12).
%F A349703 T(n,k) = 1 for k even. [Gutman, Furtula, Petrović, theorem 4 (a)]
%F A349703 T(n,k) = ceiling((n-k)/2) for odd k >= 5. [Gutman, Furtula, Petrović, theorem 4 (b)]
%F A349703 G.f.: 1 + x*y + ( x^2*y^2 + ( x^4*y^3/(1-x^3) + x^5*y^4*(1+x*y-x^2)/(1-x^2*y^2) )/(1-x^2) )/(1-x).
%e A349703 Triangle begins
%e A349703       k=0  1  2  3  4  5  6  7  8
%e A349703   n=0;  1,
%e A349703   n=1;     1,
%e A349703   n=2;        1,
%e A349703   n=3;        1,
%e A349703   n=4;        1, 1,
%e A349703   n=5;        1, 1, 1,
%e A349703   n=6;        1, 2, 1, 1,
%e A349703   n=7;        1, 3, 1, 1, 1,
%e A349703   n=8;        1, 4, 1, 2, 1, 1,
%e A349703   n=9;        1, 5, 1, 2, 1, 1, 1,
%e A349703 For n=9,k=5, the T(9,5) = 2 trees are
%e A349703   *--*--*--*--*--*     *--*--*--*--*--*
%e A349703     /|         \         /   |      \
%e A349703    * *          *       *    *       *
%o A349703 (PARI) T(n,k) = if(n==1||k%2==0,1, k==3,(n-1)^2\/12, (n-k+1)>>1);
%Y A349703 Cf. A349702 (maximum index), A055290 (count all trees), A001399 (trees k=3 leaves).
%K A349703 easy,nonn,tabf
%O A349703 0,11
%A A349703 _Kevin Ryde_, Nov 26 2021