This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349705 #29 Apr 09 2022 17:38:55 %S A349705 36,39,66,1435,5714,6410,13861,22564,27346,33137,45542,79260,171860, %T A349705 268218,442068,486127,675423,2287527,3710027,9610766,14318290, %U A349705 26293568,29361702,49703324,227358366,433100023,442960845,479174118,1221238938,1243718114,4053362596,8620689655 %N A349705 Numbers k such that the concatenation in increasing order of their prime factors, with multiplicity, is congruent to 1 (mod k). %H A349705 Martin Ehrenstein, <a href="/A349705/b349705.txt">Table of n, a(n) for n = 1..39</a> %e A349705 a(3) = 66 is a term because the concatenation of its prime factors is 2311 and 2311 == 1 (mod 66). %p A349705 filter:= proc(n) local L,t; %p A349705 lcat(map(t -> t[1]$t[2], sort( ifactors(n)[2], (a,b) -> a[1] < b[1]))) mod n = 1; %p A349705 end proc: %p A349705 select(filter, [$1..10^7]); %t A349705 upto=10^5;a={};Do[If[Mod[FromDigits[Flatten[Map[IntegerDigits[ConstantArray[First[#],Last[#]]]&,FactorInteger[k]]]],k]==1,AppendTo[a,k]],{k,upto}];a (* _Paolo Xausa_, Nov 26 2021 *) %o A349705 (Python) %o A349705 from sympy import factorint %o A349705 def ok(k): return int("".join(map(str, factorint(k, multiple=True))))%k == 1 %o A349705 print([k for k in range(2, 10**5) if ok(k)]) # _Michael S. Branicky_, Nov 26 2021 %o A349705 (Python) %o A349705 from itertools import count, islice %o A349705 from sympy import factorint %o A349705 def A349705_gen(startvalue=1): # generator of terms >= startvalue %o A349705 for k in count(max(startvalue,1)): %o A349705 c = 0 %o A349705 for d in sorted(factorint(k,multiple=True)): %o A349705 c = (c*10**len(str(d)) + d) % k %o A349705 if c == 1: %o A349705 yield k %o A349705 A349705_list = list(islice(A349705_gen(),10)) # _Chai Wah Wu_, Feb 28 2022 %Y A349705 Cf. A037276, A259047. %K A349705 nonn,hard %O A349705 1,1 %A A349705 _J. M. Bergot_ and _Robert Israel_, Nov 25 2021 %E A349705 a(28)-a(32) from _Martin Ehrenstein_, Nov 27 2021