This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349709 #56 Jan 05 2022 17:35:42 %S A349709 2,7,11,97,101,1021,1201,2003,3001,10103,10111,20011,20021,21001, %T A349709 101111,102001,102101,112103,112111,120103,201011,202001,1000003, %U A349709 1000211,1010003,1010201,1011001,1020011,1100101,1100311,1111013,1111021,1112003,1201001,2011201,2020001,2100001,2100011,10000103 %N A349709 Primes p such that if q is the next prime, A004086(p*q) = A004086(p)*A004086(q). %H A349709 Robert Israel, <a href="/A349709/b349709.txt">Table of n, a(n) for n = 1..169</a> %e A349709 a(6) = 1021 is a term because it is prime, the next prime is 1031, and the reverse of 1021*1031 = 1052651 is 1562501 = 1301*1201. %p A349709 revdigs:= proc(n) local L,i,m; %p A349709 L:= convert(n,base,10); %p A349709 m:= nops(L); %p A349709 add(L[i]*10^(m-i),i=1..m) %p A349709 end proc: %p A349709 R:= NULL: count:= 0: %p A349709 q:= 2: qr:= 2: %p A349709 while count < 50 do %p A349709 p:= q; pr:= qr; %p A349709 q:= nextprime(q); qr:= revdigs(q); %p A349709 if pr*qr = revdigs(p*q) then %p A349709 count:= count+1; R:= R, p; %p A349709 fi %p A349709 od: %p A349709 R; %t A349709 seqQ[p_] := PrimeQ[p] && Module[{r = IntegerReverse, q = NextPrime[p]}, r[p*q] == r[p] * r[q]]; Select[Range[2.2*10^6], seqQ] (* _Amiram Eldar_, Jan 05 2022 *) %o A349709 (PARI) R(n) = fromdigits(Vecrev(digits(n))); \\ A004086 %o A349709 isok(p) = if (isprime(p), my(q=nextprime(p+1)); R(p*q) == R(p)*R(q)); \\ _Michel Marcus_, Jan 05 2022 %o A349709 (Python) %o A349709 from itertools import islice %o A349709 from sympy import isprime, nextprime %o A349709 def R(n): return int(str(n)[::-1]) %o A349709 def agen(): # generator of terms %o A349709 p, pr = 2, 2 %o A349709 while True: %o A349709 q = nextprime(p) %o A349709 qr = R(q) %o A349709 if R(p*q) == pr * qr: %o A349709 yield p %o A349709 p, pr = q, qr %o A349709 print(list(islice(agen(), 38))) # _Michael S. Branicky_, Jan 05 2022 %Y A349709 Cf. A004086. %K A349709 nonn,base %O A349709 1,1 %A A349709 _J. M. Bergot_ and _Robert Israel_, Jan 05 2022