This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349713 #20 Apr 23 2025 04:49:53 %S A349713 1,2,7,26,101,404,1645,6784,28243,118442,499601,2117366,9008969, %T A349713 38458644,164643197,706574780,3038800419,13093784762,56513880913, %U A349713 244283771986,1057348164103,4582148496448,19879232544027,86331108851932,375262802895691,1632570339730086,7108008200622949 %N A349713 Antidiagonal sums of triangle A104684. %C A349713 Diagonal of the rational function 1 / (1 - x - y - (x*y)^2). - _Ilya Gutkovskiy_, Apr 22 2025 %H A349713 Michel Marcus, <a href="/A349713/b349713.txt">Table of n, a(n) for n = 0..1000</a> %H A349713 Ömür Deveci and Anthony G. Shannon, <a href="http://www.montis.pmf.ac.me/vol50/4.pdf">Some aspects of Neyman triangles and Delannoy arrays</a>, Mathematica Montisnigri, Volume L, 2021. %F A349713 a(n) = Sum_{k=0..floor(n/2)} A104684(n-k, k). %F A349713 G.f.: 1/sqrt(x^4-2*x^2-4*x+1). - _Alois P. Heinz_, Nov 26 2021 %t A349713 nterms=30;Table[Sum[Binomial[r=n-k,k]Binomial[2r-k,r],{k,0,Floor[n/2]}],{n,0,nterms-1}] (* _Paolo Xausa_, Nov 26 2021 *) %o A349713 (PARI) T(n, k) = binomial(n, k)*binomial(2*n-k, n); \\ A104684 %o A349713 a(n) = sum(k=0, n\2, T(n-k, k)); %Y A349713 Cf. A104684. %K A349713 nonn %O A349713 0,2 %A A349713 _Michel Marcus_, Nov 26 2021