This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349714 #36 Feb 16 2025 08:34:02 %S A349714 1,1,4,37,532,10426,259300,7823908,277713904,11339452792,523621438336, %T A349714 26982030104536,1534947906550528,95550736737542464, %U A349714 6460746383585984512,471533064029919744256,36946948091091750496000,3093472887944746070621056 %N A349714 E.g.f. satisfies: A(x) = exp( x * (1 + A(x)^3)/2 ). %H A349714 Seiichi Manyama, <a href="/A349714/b349714.txt">Table of n, a(n) for n = 0..352</a> %H A349714 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A349714 a(n) = (1/2^n) * Sum_{k=0..n} (3*k+1)^(n-1) * binomial(n,k). %F A349714 E.g.f.: ( -LambertW( -3*x/2 * exp(3*x/2) )/(3*x/2) )^(1/3). %F A349714 G.f.: 2 * Sum_{k>=0} (3*k+1)^(k-1) * x^k/(2 - (3*k+1)*x)^(k+1). %F A349714 a(n) ~ sqrt(1 + LambertW(exp(-1))) * 3^(n-1) * n^(n-1) / (LambertW(exp(-1))^(n + 1/3) * 2^n * exp(n)). - _Vaclav Kotesovec_, Nov 26 2021 %t A349714 a[n_] := (1/2^n) * Sum[(3*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 18, 0] (* _Amiram Eldar_, Nov 27 2021 *) %o A349714 (PARI) a(n) = sum(k=0, n, (3*k+1)^(n-1)*binomial(n, k))/2^n; %o A349714 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((-lambertw(-3*x/2*exp(3*x/2))/(3*x/2))^(1/3))) %o A349714 (PARI) my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (3*k+1)^(k-1)*x^k/(2-(3*k+1)*x)^(k+1))) %Y A349714 Cf. A007889, A202617, A349715, A349716, A349719, A349720, A349721. %K A349714 nonn %O A349714 0,3 %A A349714 _Seiichi Manyama_, Nov 26 2021