This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349718 #35 Feb 16 2025 08:34:02 %S A349718 1,1,28,12600,69699849,4070693024640,2484046163254367574, %T A349718 15778915364062895746351104,1040828457711477326843036225608036, %U A349718 711789875509887224494712166194197254144000,5040627715175514814159607456023227379139001458908168 %N A349718 Number of spanning trees in the n X n grid graph where rotations and reflections are not counted as distinct. %C A349718 The number of perfect mazes on an n X n grid of cells where rotations and reflections are not counted as distinct. %C A349718 The sequence A007341 enumerates the same spanning trees or mazes but with duplicates due to symmetries of the square counted. %C A349718 A lower bound for a(n) is the elements of A007341 divided by 8. %C A349718 Terms can be computed using Burnside's lemma and Kirchhoff's matrix tree theorem applied to various graphs. See the PARI program link for technical details. - _Andrew Howroyd_, Nov 27 2021 %H A349718 Andrew Howroyd, <a href="/A349718/b349718.txt">Table of n, a(n) for n = 1..40</a> %H A349718 Andrew Howroyd, <a href="/A349718/a349718.txt">PARI program using Kirchhoff's Matrix Tree Theorem</a>, 2021. %H A349718 Paul Kim, <a href="http://rave.ohiolink.edu/etdc/view?acc_num=osu1563286393237089">Intelligent Maze Generation</a>, Doctoral dissertation, Ohio State University, 2019. %H A349718 Mike Koss, <a href="https://github.com/mckoss/maze-canvas">Maze Canvas</a>, Open source unique maze generator, 2021. %H A349718 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a> %H A349718 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a> %H A349718 Wikipedia, <a href="https://en.wikipedia.org/wiki/Burnside%27s_lemma">Burnside's_lemma</a>, <a href="https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem">Kirchhoff's_theorem</a> %F A349718 a(n) ~ A007341(n) / 8; a(n) >= A007341(n) / 8. %F A349718 a(2*n) = (A116469(2*n,2*n) + 4*n*A116469(2*n,n))/8. - _Andrew Howroyd_, Nov 27 2021 %e A349718 While there are 192 mazes on a 3 X 3 grid, only a(3) = 28 are distinct mod rotations and reflections. %e A349718 21 are asymmetric: %e A349718 _____ _____ _____ _____ _____ _____ _____ _____ %e A349718 | | | | | | | _| | _| | _| | _| | _| %e A349718 | | |_| | |_| | | |_|_| | | | | | _| | |_ | | |_ | | |_ _| %e A349718 |_|_ _| |_ _|_| |_ _ _| |_|_|_| |_|_ _| |_ _|_| |_|_ _| |_ _ _| %e A349718 _____ _____ _____ _____ _____ _____ _____ _____ %e A349718 | _| | _| | _| | _| | _| | _ | | _ | | _ | %e A349718 |_| | |_| _| |_|_ | | | | | | |_| | |_ | | |_ |_| |_ _| | %e A349718 |_ _|_| |_ _ _| |_ _ _| |_|_ _| |_ _ _| |_ _|_| |_ _ _| |_ _ _| %e A349718 _____ _____ _____ _____ _____ %e A349718 | _ _| | _ _| |_ _| |_ _| |_ _| %e A349718 |_ | |_ _| | _| | _ | | | | %e A349718 |_ _|_| |_ _ _| |_|_ _| |_ _|_| |_|_ _| %e A349718 . %e A349718 5 have 2-way symmetry: %e A349718 _____ _____ _____ _____ _____ %e A349718 | | | | | _| | _ _| |_ _| %e A349718 | | | | |_| |_| |_| | | |_ _ | | | %e A349718 |_|_|_| |_ _ _| |_ _ _| |_ _ _| |_|_|_| %e A349718 . %e A349718 2 have 4-way symmetry: %e A349718 _____ _____ %e A349718 |_ _| |_ | | %e A349718 |_ _| | _| %e A349718 |_ _ _| |_|_ _| %o A349718 (PARI) \\ See link. - _Andrew Howroyd_, Nov 27 2021 %Y A349718 Cf. A007341, A116469. %K A349718 nonn %O A349718 1,3 %A A349718 _Mike Koss_, Nov 26 2021 %E A349718 Terms a(7) and beyond from _Andrew Howroyd_, Nov 27 2021