cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349726 Numbers k >= 1 such that A018804(k) divided by A000203(k) is an integer.

This page as a plain text file.
%I A349726 #18 Aug 18 2022 17:11:54
%S A349726 1,2,40,44,220,252,752,980,2940,3680,4508,10080,10780,11016,12224,
%T A349726 14432,16072,17384,26096,26216,36672,36848,44064,45792,55080,60588,
%U A349726 61120,64288,72160,80360,82656,85536,88396,88944,93568,95256,112000,112572,120320,134464,144752
%N A349726 Numbers k >= 1 such that A018804(k) divided by A000203(k) is an integer.
%e A349726 k = 40 : A018804(40) = 180, A000203(40) = 90, 180/90 = 2 thus 40 is a term.
%t A349726 A018804[n_]:=Apply[Times,Apply[((#1-1)#2/#1+1)#1^#2&,FactorInteger[n],{1}]]; (* After _Amiram Eldar_ in A018804 *)
%t A349726 upto=10^5;Reap[Do[If[IntegerQ[A018804[k]/DivisorSigma[1,k]],Sow[k]],{k,upto}]][[-1,-1]] (* _Paolo Xausa_, Aug 18 2022 *)
%o A349726 (PARI) isok(k) = (sumdiv(k, d, k*eulerphi(d)/d) % sigma(k)) == 0; \\ _Michel Marcus_, Nov 27 2021
%Y A349726 Cf. A000203, A018804.
%K A349726 nonn
%O A349726 1,2
%A A349726 _Ctibor O. Zizka_, Nov 27 2021
%E A349726 a(12)-a(36) from _Paolo Xausa_, Nov 27 2021
%E A349726 More terms from _Amiram Eldar_, Nov 27 2021