A349738 Numbers k such that A255217(k) divides A002110(k).
2, 4, 5, 9, 15, 17, 20, 24, 25, 26, 27, 29, 31, 32, 33, 34, 37, 44, 45, 46, 49, 51, 52, 61, 62, 63, 64, 71, 74, 79, 80, 81, 82, 85, 87, 88, 91, 95, 103, 104, 105, 110, 111, 112, 115, 117, 118, 119, 120, 121, 127, 131, 135, 137, 142, 148, 150, 152, 154, 158, 159, 163, 165, 173, 175, 177, 179, 181
Offset: 1
Keywords
Examples
a(3) = 5 is a term because A255217(5) = 2*3*5*7*11 mod (2+3+5+7+11) = 14 divides 2*3*5*7*11.
Links
- Martin Ehrenstein, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:= 1: S:= 0: p:= 1: count:= 0: R:= NULL: for n from 1 while count < 100 do p:= nextprime(p); P:= P*p; S:= S+p; r:= P mod S; if r = 0 then next fi; v:= P mod r; if v = 0 then count:= count+1; R:= R,n; fi od: R;
-
Mathematica
Select[Range[200], (m = Mod[Times @@ (p = Prime[Range[#]]), Plus @@ p]) > 0 && Divisible[Times @@ p, m] &] (* Amiram Eldar, Nov 28 2021 *)