cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349739 Number of ordered pairs of commuting elements (partial permutations) in the symmetric inverse semigroup on [n].

This page as a plain text file.
%I A349739 #43 Dec 20 2021 18:15:51
%S A349739 1,4,31,310,3925,58936,1032979,20600266,461742985
%N A349739 Number of ordered pairs of commuting elements (partial permutations) in the symmetric inverse semigroup on [n].
%D A349739 Stephen Lipscomb, Symmetric Inverse Semigroups, Mathematical Surveys and Monographs, Volume 46, 1996, Chapters 3,4,5.
%t A349739 x[list_] := If[list == {}, 1, Apply[Times, list] Apply[Times,  Table[Count[list, i]!, {i, 1, Max[list]}]]]; y[list_] := If[list == {}, 1, Apply[Times,Table[Count[list, i]!, {i, 1, Max[list]}]]];
%t A349739 c[n_, pair_] := n!/(x[pair[[1]]] y[pair[[2]]]); n[k_, list_] := Count[list, k];
%t A349739 m[k_, list_] := Sum[Binomial[n[k, list], j]^2 j! k^j, {j, 0, n[k, list]}];
%t A349739 xp[list_] := Apply[Times, Table[m[k, list], {k, 1, Max[{1, list}]}]];
%t A349739 partialPermMatrices1[n_] := Module[{im = PadRight[IdentityMatrix[n], {n + 1, n}]},
%t A349739   Sort@Map[Extract[im, List /@ #] &]@ Permutations[Join[ConstantArray[n + 1, n], Range@n], {n}]]; s[list_] := Total[Map[Apply[Times, #] &,Map[Min, Map[list[[#]] &, Map[Position[#, 1] &, partialPermMatrices1[Length[list]]], {2}], {2}]]]; Table[(Map[s,Level[Table[Level[Table[Table[{IntegerPartitions[nn - k][[i]],     IntegerPartitions[k][[j]]}, {i, 1,PartitionsP[nn - k]}], {j, 1,PartitionsP[k]}], {2}], {k,0, nn}], {2}][[All, 2]]])*(Map[xp, Level[Table[ Level[Table[Table[{IntegerPartitions[nn - k][[i]], IntegerPartitions[k][[j]]}, {i, 1, PartitionsP[nn - k]}], {j, 1, PartitionsP[k]}], {2}], {k, 0, nn}], {2}][[All, 1]]])*(Map[c[nn, #] &,Level[Table[Level[Table[Table[{IntegerPartitions[nn - k][[i]],IntegerPartitions[k][[j]]}, {i, 1, PartitionsP[nn - k]}], {j, 1,PartitionsP[k]}], {2}], {k, 0, nn}], {2}]]) // Total, {nn, 0, 7}]
%Y A349739 Cf. A002720, A000712 (number of conjugacy classes).
%K A349739 nonn,more
%O A349739 0,2
%A A349739 _Geoffrey Critzer_, Dec 19 2021