This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349739 #43 Dec 20 2021 18:15:51 %S A349739 1,4,31,310,3925,58936,1032979,20600266,461742985 %N A349739 Number of ordered pairs of commuting elements (partial permutations) in the symmetric inverse semigroup on [n]. %D A349739 Stephen Lipscomb, Symmetric Inverse Semigroups, Mathematical Surveys and Monographs, Volume 46, 1996, Chapters 3,4,5. %t A349739 x[list_] := If[list == {}, 1, Apply[Times, list] Apply[Times, Table[Count[list, i]!, {i, 1, Max[list]}]]]; y[list_] := If[list == {}, 1, Apply[Times,Table[Count[list, i]!, {i, 1, Max[list]}]]]; %t A349739 c[n_, pair_] := n!/(x[pair[[1]]] y[pair[[2]]]); n[k_, list_] := Count[list, k]; %t A349739 m[k_, list_] := Sum[Binomial[n[k, list], j]^2 j! k^j, {j, 0, n[k, list]}]; %t A349739 xp[list_] := Apply[Times, Table[m[k, list], {k, 1, Max[{1, list}]}]]; %t A349739 partialPermMatrices1[n_] := Module[{im = PadRight[IdentityMatrix[n], {n + 1, n}]}, %t A349739 Sort@Map[Extract[im, List /@ #] &]@ Permutations[Join[ConstantArray[n + 1, n], Range@n], {n}]]; s[list_] := Total[Map[Apply[Times, #] &,Map[Min, Map[list[[#]] &, Map[Position[#, 1] &, partialPermMatrices1[Length[list]]], {2}], {2}]]]; Table[(Map[s,Level[Table[Level[Table[Table[{IntegerPartitions[nn - k][[i]], IntegerPartitions[k][[j]]}, {i, 1,PartitionsP[nn - k]}], {j, 1,PartitionsP[k]}], {2}], {k,0, nn}], {2}][[All, 2]]])*(Map[xp, Level[Table[ Level[Table[Table[{IntegerPartitions[nn - k][[i]], IntegerPartitions[k][[j]]}, {i, 1, PartitionsP[nn - k]}], {j, 1, PartitionsP[k]}], {2}], {k, 0, nn}], {2}][[All, 1]]])*(Map[c[nn, #] &,Level[Table[Level[Table[Table[{IntegerPartitions[nn - k][[i]],IntegerPartitions[k][[j]]}, {i, 1, PartitionsP[nn - k]}], {j, 1,PartitionsP[k]}], {2}], {k, 0, nn}], {2}]]) // Total, {nn, 0, 7}] %Y A349739 Cf. A002720, A000712 (number of conjugacy classes). %K A349739 nonn,more %O A349739 0,2 %A A349739 _Geoffrey Critzer_, Dec 19 2021