cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349744 a(n) is the number of distinct numbers of steps required for the last n digits of integers to repeat themselves by iterating the map m -> m^3.

This page as a plain text file.
%I A349744 #8 Mar 11 2023 07:55:16
%S A349744 2,5,7,12,15,18,29,42,57,87,108
%N A349744 a(n) is the number of distinct numbers of steps required for the last n digits of integers to repeat themselves by iterating the map m -> m^3.
%e A349744 a(1) = 2. The paths of the last digit of integers resulted from iterating the map, m -> m^3, are: 0->0; 1->1; 2->8->2; 3->7->3; 4->4; 5->5; 6->6; 7->3->7; 8->2->8; 9->9. Integers ending with 0, 1, 4, 5, 6 or 9 take 1 step to repeat the last digit. Integers ending with 2, 3, 7 or 8 takes 2 steps to repeat the last digit. Therefore, for n = 1, the distinct numbers of steps s(1) = {1, 2} and a(1) = 2.
%e A349744 a(2) = 5 because the distinct steps for the last two digits of integers to repeat themselves by iterating the map, m -> m^3, is s(2) = {1, 2, 3, 4, 5}.
%e A349744 a(3) = 7:  s(3) = s(2) + {20, 21}.
%e A349744 a(4) = 12: s(4) = s(3) + {6, 22, 100..102}.
%e A349744 a(5) = 15: s(5) = s(4) + {500..502}.
%e A349744 a(6) = 18: s(6) = s(5) + {2500..2502}.
%e A349744 a(7) = 29: s(7) = s(6) + {8..10, 40, 200, 1000, 5000, 12500..12502, 25000}
%e A349744 a(8) = 42: s(8) = s(7) + {16..18, 80, 400, 2000, 10000, 50000, 62500..62502, 125000, 250000}.
%e A349744 a(9) = 57: s(9) = s(8) + {32..34, 160, 800, 4000, 20000, 100000, 312500..312502, 500000, 625000, 1250000, 2500000}.
%e A349744 a(10)= 87: s(10)= s(9) + {7, 11, 19, 23, 35, 64..67, 103, 320, 503, 1600, 2503, 8000, 12503, 40000, 62503, 200000, 312503, 1000000, 1562500..1562503, 3125000, 5000000, 6250000, 12500000, 25000000}.
%e A349744 a(11)=108: s(11)=s(10) + {128..131, 640, 3200, 16000, 80000, 400000, 2000000, 7812500..7812503, 10000000, 15625000, 31250000, 50000000, 62500000, 125000000, 250000000}.
%o A349744 (Python)
%o A349744 for n in range(1, 12):
%o A349744     b = 10**n; M = set()
%o A349744     for i in range(b):
%o A349744         t = i; L = set()
%o A349744         while t not in L: L.add(t); t = (t**3)%b
%o A349744         d = len(L)
%o A349744         if d not in M: M.add(d)
%o A349744     print(len(M), end = ', ')
%Y A349744 Cf. A000578, A348338, A348339.
%K A349744 nonn,base,more
%O A349744 1,1
%A A349744 _Ya-Ping Lu_, Nov 28 2021