A349762 Numbers k such that phi(k) = A000010(k) is an abundant number (A005101) and d(k) = A000005(k) is a deficient number (A005100).
13, 19, 21, 25, 26, 27, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 49, 54, 55, 56, 57, 61, 62, 65, 66, 67, 70, 71, 73, 74, 77, 78, 79, 81, 82, 86, 87, 88, 89, 91, 93, 95, 97, 100, 101, 103, 104, 105, 109, 110, 111, 112, 113, 114, 115, 119, 122, 123, 125, 127, 129
Offset: 1
Keywords
Examples
13 is a term since phi(13) = 12 is an abundant number, sigma(12) = 28 > 2*12 = 24, and d(13) = 2 is a deficient number, sigma(2) = 3 < 2*2 = 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- József Sándor, Selected Chapters of Geometry, Analysis and Number Theory, 2005, pp. 132-134.
Crossrefs
Programs
-
Mathematica
abQ[n_] := DivisorSigma[1, n] > 2*n; defQ[n_] := DivisorSigma[1, n] < 2*n; q[n_] := abQ[EulerPhi[n]] && defQ[DivisorSigma[0, n]]; Select[Range[150], q]
Comments