cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349762 Numbers k such that phi(k) = A000010(k) is an abundant number (A005101) and d(k) = A000005(k) is a deficient number (A005100).

Original entry on oeis.org

13, 19, 21, 25, 26, 27, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 49, 54, 55, 56, 57, 61, 62, 65, 66, 67, 70, 71, 73, 74, 77, 78, 79, 81, 82, 86, 87, 88, 89, 91, 93, 95, 97, 100, 101, 103, 104, 105, 109, 110, 111, 112, 113, 114, 115, 119, 122, 123, 125, 127, 129
Offset: 1

Views

Author

Amiram Eldar, Nov 29 2021

Keywords

Comments

Sándor (2005) proved that this sequence is infinite by showing that it includes all the numbers of the form 3^(p^2-1) where p is a prime.

Examples

			13 is a term since phi(13) = 12 is an abundant number, sigma(12) = 28 > 2*12 = 24, and d(13) = 2 is a deficient number, sigma(2) = 3 < 2*2 = 4.
		

Crossrefs

Programs

  • Mathematica
    abQ[n_] := DivisorSigma[1, n] > 2*n; defQ[n_] := DivisorSigma[1, n] < 2*n; q[n_] := abQ[EulerPhi[n]] && defQ[DivisorSigma[0, n]]; Select[Range[150], q]