cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349767 Numbers m such that 2^m - m is divisible by 5.

This page as a plain text file.
%I A349767 #21 Aug 26 2022 10:25:55
%S A349767 3,14,16,17,23,34,36,37,43,54,56,57,63,74,76,77,83,94,96,97,103,114,
%T A349767 116,117,123,134,136,137,143,154,156,157,163,174,176,177,183,194,196,
%U A349767 197,203,214,216,217,223,234,236,237,243,254,256,257,263,274,276,277,283,294,296,297,303
%N A349767 Numbers m such that 2^m - m is divisible by 5.
%C A349767 For every prime p, there are infinitely many numbers m such that 2^m - m (A000325) is divisible by p, here are numbers m corresponding to p = 5.
%C A349767 Equivalently, numbers that are congruent to {3, 14, 16, 17, 23, 34, 36, 37, 43, 54, 56, 57} mod 60, <==> numbers that are congruent to {+-3, +-14, +-16, +-17, +-23, +-34} mod 60.
%D A349767 Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.
%H A349767 The IMO Compendium, <a href="https://imomath.com/othercomp/Can/CanMO83.pdf">Problem 4</a>, 15th Canadian Mathematical Olympiad 1983.
%H A349767 <a href="/index/O#Olympiads">Index to sequences related to Olympiads</a>.
%p A349767 filter:= n -> 2^n-n mod 5 = 0 : select(filter, [$1..400]);
%t A349767 Select[Range[300], PowerMod[2, #, 5] == Mod[#, 5] &] (* _Amiram Eldar_, Dec 10 2021 *)
%o A349767 (PARI) isok(m) = Mod(2, 5)^m == Mod(m, 5); \\ _Michel Marcus_, Dec 10 2021
%o A349767 (Python)
%o A349767 def ok(n): return pow(2, n, 5) == n%5
%o A349767 print([k for k in range(357) if ok(k)]) # _Michael S. Branicky_, Dec 10 2021
%Y A349767 Cf. A000325, A070402, A010874.
%Y A349767 Similar with: A299174 (p = 2), A047257 (p = 3), this sequence (p = 5).
%K A349767 nonn
%O A349767 1,1
%A A349767 _Bernard Schott_, Dec 10 2021