This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349772 #62 Dec 27 2021 08:23:47 %S A349772 3,7,5,11,7,13,9,32,17,40,55,40,24,13,69,56,25,75,104,32,56,29,85,119, %T A349772 31,19,95,133,35,105,21,105,111,88,152,176,23,161,41,48,205,240,43,88, %U A349772 275,208,184,27,235,297,49,147,280,245,29,203,319,377,240,159,155,217,371,341,55,64,112 %N A349772 Consider primitive 120-degree integer triangles with sides A < B < C = A002476(n). This sequence gives the values of A. %H A349772 Seiichi Manyama, <a href="/A349772/b349772.txt">Table of n, a(n) for n = 1..1000</a> %H A349772 Wikipedia, <a href="https://en.wikipedia.org/wiki/Integer_triangle">Integer triangle</a> %F A349772 Let B = A350347(n). A^2 + A*B + B^2 = C^2. %e A349772 n | ( A, B, C) %e A349772 ----+------------- %e A349772 1 | ( 3, 5, 7) %e A349772 2 | ( 7, 8, 13) %e A349772 3 | ( 5, 16, 19) %e A349772 4 | (11, 24, 31) %e A349772 5 | ( 7, 33, 37) %e A349772 6 | (13, 35, 43) %e A349772 7 | ( 9, 56, 61) %e A349772 8 | (32, 45, 67) %e A349772 9 | (17, 63, 73) %o A349772 (Ruby) %o A349772 require 'prime' %o A349772 def A(n) %o A349772 (1..n).each{|a| %o A349772 (a + 1..n).each{|b| %o A349772 return a if a * a + a * b + b * b == n * n %o A349772 } %o A349772 } %o A349772 end %o A349772 def A349772(n) %o A349772 ary = [] %o A349772 i = 1 %o A349772 while ary.size < n %o A349772 ary << A(i) if i.prime? && i % 6 == 1 %o A349772 i += 1 %o A349772 end %o A349772 ary %o A349772 end %o A349772 p A349772(100) %Y A349772 Cf. A002366, A002476 (C), A229858, A264827, A350347 (B). %K A349772 nonn %O A349772 1,1 %A A349772 _Seiichi Manyama_, Dec 26 2021