A349786 Prime numbers p such that iterating the map m -> m^2 on p generates a number ending with p.
5, 41, 61, 241, 281, 401, 521, 601, 641, 761, 881, 1201, 1361, 1601, 2081, 2161, 2801, 3041, 3121, 3361, 3761, 4001, 4241, 4481, 4561, 4721, 4801, 5281, 5441, 5521, 6481, 6961, 7121, 7681, 7841, 8081, 8161, 8641, 9041, 9281, 9521, 9601, 11681, 12161, 12641
Offset: 1
Examples
41 is a term because iterating the map, m -> m^2, on 41 gives: 41 -> 1681 -> 2825761 -> 7984925229121 -> 63759030914653054346432641, which ends with 41.
Programs
-
Mathematica
q[n_] := NestWhileList[Mod[#^2, 10^IntegerLength[n]] &, n, UnsameQ, All][[-1]] == n; Select[Range[10^4], PrimeQ[#] && q[#] &] (* Amiram Eldar, Nov 30 2021 *)
-
Python
from sympy import nextprime p0 = 1 while p0 < 13000: p = nextprime(p0); s = len(str(p)); t = p; L = set() while t not in L: L.add(t); t = (t*t) % 10**s if t == p: print(p, end = ', ') p0 = p