This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349792 #37 Dec 13 2021 15:18:56 %S A349792 2,3,5,6,8,25,29,38,59,101,135,217,260,295,317,455,551,686,687,720, %T A349792 825,912,1193,1233,1300,1879,1967,2200,2576,2719,2857,3303,3512,4215, %U A349792 4241,4448,4658,5825,5932,5952,6155,6750,7275,10305,10323,10962,11279,13495,14104 %N A349792 Numbers k such that k*(k+1) is the median of the primes between k^2 and (k+1)^2. %H A349792 Chai Wah Wu, <a href="/A349792/b349792.txt">Table of n, a(n) for n = 1..552</a> (terms 1..85 from Hugo Pfoertner) %t A349792 Select[Range@3000,Median@Select[Range[#^2,(#+1)^2],PrimeQ]==#(#+1)&] (* _Giorgos Kalogeropoulos_, Dec 05 2021 *) %o A349792 (PARI) a349791(n) = {my(p1=nextprime(n^2), p2=precprime((n+1)^2), np1=primepi(p1), np2=primepi(p2), nm=(np1+np2)/2); if(denominator(nm)==1, prime(nm), (prime(nm-1/2)+prime(nm+1/2))/2)}; %o A349792 for(k=2,5000, my(t=k*(k+1)); if(t==a349791(k),print1(k,", "))) %o A349792 (Python) %o A349792 from sympy import primerange %o A349792 from statistics import median %o A349792 def ok(n): return n>1 and int(median(primerange(n**2, (n+1)**2)))==n*(n+1) %o A349792 print([k for k in range(999) if ok(k)]) # _Michael S. Branicky_, Dec 05 2021 %o A349792 (Python) %o A349792 from itertools import count, islice %o A349792 from sympy import primepi, prime, nextprime %o A349792 def A349792gen(): # generator of terms %o A349792 p1 = 0 %o A349792 for n in count(1): %o A349792 p2 = primepi((n+1)**2) %o A349792 b = p1 + p2 + 1 %o A349792 if b % 2: %o A349792 p = prime(b//2) %o A349792 q = nextprime(p) %o A349792 if p+q == 2*n*(n+1): %o A349792 yield n %o A349792 p1 = p2 %o A349792 A349792_list = list(islice(A349792gen(),12)) # _Chai Wah Wu_, Dec 08 2021 %Y A349792 Cf. A000290, A000720, A002378, A014085, A349791. %K A349792 nonn %O A349792 1,1 %A A349792 _Hugo Pfoertner_, Dec 05 2021