This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349796 #6 Jan 07 2022 15:54:26 %S A349796 0,0,0,0,0,0,0,1,2,5,8,15,23,37,52,80,109,156,208,289,378,509,654,865, %T A349796 1098,1425,1789,2290,2852,3603,4450,5569,6830,8467,10321,12701,15393, %U A349796 18805,22678,27535,33057,39908,47701,57304,68226,81572,96766,115212,136201 %N A349796 Number of non-strict integer partitions of n with at least one part of odd multiplicity that is not the first or last. %C A349796 Also the number of non-weakly alternating non-strict integer partitions of n, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence involves the somewhat degenerate case where no strict increases are allowed. %F A349796 a(n) = A349061(n) - A347548(n). %e A349796 The a(7) = 1 through a(11) = 15 partitions: %e A349796 (3211) (4211) (3321) (5311) (4322) %e A349796 (32111) (4311) (6211) (4421) %e A349796 (5211) (32221) (5411) %e A349796 (42111) (33211) (6311) %e A349796 (321111) (43111) (7211) %e A349796 (52111) (42221) %e A349796 (421111) (43211) %e A349796 (3211111) (53111) %e A349796 (62111) %e A349796 (322211) %e A349796 (332111) %e A349796 (431111) %e A349796 (521111) %e A349796 (4211111) %e A349796 (32111111) %t A349796 whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}]; %t A349796 Table[Length[Select[IntegerPartitions[n],!whkQ[#]&&!whkQ[-#]&&!UnsameQ@@#&]],{n,0,30}] %Y A349796 Counting all non-strict partitions gives A047967. %Y A349796 Signatures of this type are counted by A274230, complement A027383. %Y A349796 The strict instead of non-strict version is A347548, ranked by A350352. %Y A349796 The version for compositions allowing strict is A349053, ranked by A349057. %Y A349796 Allowing strict partitions gives A349061, complement A349060. %Y A349796 The complement in non-strict partitions is A349795. %Y A349796 These partitions are ranked by A350140 = A349794 \ A005117. %Y A349796 A000041 = integer partitions, strict A000009. %Y A349796 A001250 = alternating permutations, complement A348615. %Y A349796 A003242 = Carlitz (anti-run) compositions. %Y A349796 A025047 = alternating compositions, ranked by A345167. %Y A349796 A025048/A025049 = directed alternating compositions. %Y A349796 A096441 = weakly alternating 0-appended partitions. %Y A349796 A345170 = partitions w/ an alternating permutation, ranked by A345172. %Y A349796 A349052 = weakly alternating compositions. %Y A349796 A349056 = weakly alternating permutations of prime indices. %Y A349796 A349798 = weakly but not strongly alternating permutations of prime indices. %Y A349796 Cf. A000111, A002865, A117298, A117989, A129852, A129853, A345165, A345192, A349054, A349059, A349801. %K A349796 nonn %O A349796 0,9 %A A349796 _Gus Wiseman_, Dec 25 2021