This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349798 #9 Dec 18 2021 14:56:21 %S A349798 0,0,0,1,0,0,0,1,1,0,0,2,0,0,0,1,0,2,0,2,0,0,0,4,1,0,1,2,0,0,0,1,0,0, %T A349798 0,2,0,0,0,4,0,0,0,2,2,0,0,5,1,2,0,2,0,4,0,4,0,0,0,2,0,0,2,1,0,0,0,2, %U A349798 0,0,0,5,0,0,2,2,0,0,0,5,1,0,0,2,0,0,0 %N A349798 Number of weakly alternating ordered prime factorizations of n with at least two adjacent equal parts. %C A349798 We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence counts permutations of prime factors that are weakly but not strongly alternating. Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}. %H A349798 Wikipedia, <a href="https://en.wikipedia.org/wiki/Alternating_permutation">Alternating permutation</a> %e A349798 Using prime indices instead of factors, the a(n) ordered prime factorizations for selected n are: %e A349798 n = 4 12 24 48 90 120 192 240 270 %e A349798 ------------------------------------------------------------------ %e A349798 11 112 1112 11112 1223 11132 1111112 111132 12232 %e A349798 211 1121 11121 1322 11213 1111121 111213 13222 %e A349798 1211 11211 2213 11312 1111211 111312 21223 %e A349798 2111 12111 2231 21113 1112111 112131 21322 %e A349798 21111 3122 21311 1121111 113121 22132 %e A349798 3221 23111 1211111 121113 22213 %e A349798 31112 2111111 121311 22231 %e A349798 31211 131112 22312 %e A349798 131211 23122 %e A349798 211131 23221 %e A349798 213111 31222 %e A349798 231111 32212 %e A349798 311121 %e A349798 312111 %t A349798 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A349798 whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}]; %t A349798 Table[Length[Select[Permutations[primeMS[n]],(whkQ[#]||whkQ[-#])&&MatchQ[#,{___,x_,x_,___}]&]],{n,100}] %Y A349798 This is the weakly but not strictly alternating case of A008480. %Y A349798 Including alternating (in fact, anti-run) permutations gives A349056. %Y A349798 These partitions are counted by A349795, ranked by A350137. %Y A349798 A complementary version is A349796, ranked by A350140. %Y A349798 The version for compositions is A349800, ranked by A349799. %Y A349798 A001250 = alternating permutations, ranked by A349051, complement A348615. %Y A349798 A025047/A025048/A025049 = alternating compositions, ranked by A345167. %Y A349798 A056239 adds up prime indices, row sums of A112798, row lengths A001222. %Y A349798 A335452 = anti-run ordered prime factorizations. %Y A349798 A344652 = ordered prime factorizations w/o weakly increasing triples. %Y A349798 A345164 = alternating ordered prime factorizations, with twins A344606. %Y A349798 A345194 = alternating patterns, with twins A344605. %Y A349798 A349052/A129852/A129853 = weakly alternating compositions. %Y A349798 A349053 = non-weakly alternating compositions, ranked by A349057. %Y A349798 A349060 = weakly alternating partitions, complement A349061. %Y A349798 A349797 = non-weakly alternating ordered prime factorizations. %Y A349798 Cf. A005649, A096441, A335433, A335448, A344614, A344615, A345166, A345173, A345195, A348609, A349794, A349801. %K A349798 nonn %O A349798 1,12 %A A349798 _Gus Wiseman_, Dec 14 2021