This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349801 #6 Dec 25 2021 02:44:58 %S A349801 0,0,1,1,3,4,8,11,18,25,37,50,71,94,128,168,223,288,376,480,617,781, %T A349801 991,1243,1563,1945,2423,2996,3704,4550,5589,6826,8333,10126,12293, %U A349801 14865,17959,21618,25996,31165,37318,44562,53153,63239,75153,89111,105535,124730 %N A349801 Number of integer partitions of n into three or more parts or into two equal parts. %C A349801 This sequence arose as the following degenerate case. If we define a sequence to be alternating if it is alternately strictly increasing and strictly decreasing, starting with either, then a(n) is the number of non-alternating integer partitions of n. Under this interpretation: %C A349801 - The non-strict case is A047967, weak A349796, weak complement A349795. %C A349801 - The complement is counted by A065033(n) = ceiling(n/2) for n > 0. %C A349801 - These partitions are ranked by A289553 \ {1}, complement A167171 \/ {1}. %C A349801 - The version for compositions is A345192, ranked by A345168. %C A349801 - The weak version for compositions is A349053, ranked by A349057. %C A349801 - The weak version is A349061, complement A349060, ranked by A349794. %F A349801 a(1) = 0; a(n > 0) = A000041(n) - ceiling(n/2). %e A349801 The a(2) = 1 through a(7) = 11 partitions: %e A349801 (11) (111) (22) (221) (33) (322) %e A349801 (211) (311) (222) (331) %e A349801 (1111) (2111) (321) (421) %e A349801 (11111) (411) (511) %e A349801 (2211) (2221) %e A349801 (3111) (3211) %e A349801 (21111) (4111) %e A349801 (111111) (22111) %e A349801 (31111) %e A349801 (211111) %e A349801 (1111111) %t A349801 Table[Length[Select[IntegerPartitions[n],MatchQ[#,{x_,x_}|{_,_,__}]&]],{n,0,10}] %Y A349801 A000041 counts partitions, ordered A011782. %Y A349801 A001250 counts alternating permutations, complement A348615. %Y A349801 A004250 counts partitions into three or more parts, strict A347548. %Y A349801 A025047/A025048/A025049 count alternating compositions, ranked by A345167. %Y A349801 A096441 counts weakly alternating 0-appended partitions. %Y A349801 A345165 counts partitions w/ no alternating permutation, complement A345170. %Y A349801 Cf. A000070, A001700, A002865, A117298, A117989, A102726, A128761, A345162, A345163, A345166, A349798. %K A349801 nonn %O A349801 0,5 %A A349801 _Gus Wiseman_, Dec 23 2021