This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349802 #31 Dec 06 2021 12:36:39 %S A349802 1,1,1,0,1,0,0,1,1,0,0,1,1,1,0,0,2,2,1,1,0,0,2,3,2,1,1,0,0,4,6,4,2,1, %T A349802 1,0,0,5,10,7,4,2,1,1,0,0,8,18,14,8,4,2,1,1,0,0,11,31,26,15,8,4,2,1,1, %U A349802 0,0,18,56,50,30,16,8,4,2,1,1,0 %N A349802 Triangle read by rows: T(n,k) is the number of binary Lyndon words of length n that begin with exactly k 0's. 0 <= k <= n. %C A349802 Rows sum to A001037. %C A349802 Conjecture: The Euler transform of column k=1 gives the Fibonacci numbers, the Euler transform of column k=2 gives the tribonacci numbers (A000073), and more generally, the Euler transform of column k >= 1 gives the (k+1)-bonacci numbers (A048887). %H A349802 Andrew Howroyd, <a href="/A349802/b349802.txt">Table of n, a(n) for n = 0..1325</a> (rows n=0..50) %F A349802 T(n,n) = 0 for n >= 2. %F A349802 T(n,n-1) = 1 for n >= 1. %F A349802 T(n,n-m) = 2^(m-2) for n >= 2*m - 1 and m >= 2. %e A349802 For n = 6, the values correspond to the following Lyndon words: %e A349802 T(6,1) = 2 via 010111 and 011111; %e A349802 T(6,2) = 3 via 001011, 001101, and 001111; %e A349802 T(6,3) = 2 via 000101 and 000111; %e A349802 T(6,4) = 1 via 000011; and %e A349802 T(6,5) = 1 via 000001. %e A349802 Table begins: %e A349802 n\k | 0 1 2 3 4 5 6 7 8 9 %e A349802 ----+------------------------------------ %e A349802 0 | 1 %e A349802 1 | 1, 1 %e A349802 2 | 0, 1, 0 %e A349802 3 | 0, 1, 1, 0 %e A349802 4 | 0, 1, 1, 1, 0 %e A349802 5 | 0, 2, 2, 1, 1, 0 %e A349802 6 | 0, 2, 3, 2, 1, 1, 0 %e A349802 7 | 0, 4, 6, 4, 2, 1, 1, 0 %e A349802 8 | 0, 5, 10, 7, 4, 2, 1, 1, 0 %e A349802 9 | 0, 8, 18, 14, 8, 4, 2, 1, 1, 0 %e A349802 ... %o A349802 (PARI) %o A349802 B(k,n)=my(g=1/(1 - x*(1-x^k)/(1-x))); Vec(1 + sum(j=1, n, moebius(j)/j * log(subst(g + O(x*x^(n\j)), x, x^j)))) %o A349802 A(n,m)={my(M=Mat(vector(m, k, Col(B(k,n) - B(k-1,n))))); M[1,1]=M[2,2]=1; M} %o A349802 { my(M=A(10,10)); for(n=1, #M, print(M[n,1..n])) } \\ _Andrew Howroyd_, Dec 05 2021 %Y A349802 Cf. A000045, A000073, A001037, A006206 (k=1), A048887. %K A349802 nonn,tabl %O A349802 0,17 %A A349802 _Peter Kagey_, Nov 30 2021