This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349808 #39 Jul 04 2023 14:23:22 %S A349808 1,50,190,400,680,1030,1450,1940,2500,3130,3830,4600,5440,6350,7330, %T A349808 8380,9500,10690,11950,13280,14680,16150,17690,19300,20980,22730, %U A349808 24550,26440,28400,30430,32530,34700,36940,39250,41630,44080,46600,49190,51850,54580,57380,60250,63190,66200,69280,72430,75650,78940,82300,85730,89230,92800 %N A349808 Number of cells in a regular 7-gon after n generations of mitosis. %C A349808 See A350000 for background information. %H A349808 Scott R. Shannon, <a href="/A349808/a349808.gif">Illustration for a(1) = 50</a>, the 7-gon after the first splitting. %H A349808 Scott R. Shannon, <a href="/A349808/a349808_1.gif">Illustration for a(2) = 190</a>, the 7-gon after the second splitting. %H A349808 Scott R. Shannon, <a href="/A349808/a349808_2.gif">Illustration for a(3) = 400</a> (third generation). %H A349808 Scott R. Shannon, <a href="/A349808/a349808_3.gif">Illustration for a(4) = 680</a> (fourth generation). %H A349808 Scott R. Shannon, <a href="/A349808/a349808_4.gif">Illustration for a(5) = 1030</a> (fifth generation). %H A349808 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3, -3, 1). %F A349808 a(0)=1; for n>=1, a(n) = 35*k^2+35*k-20. %F A349808 a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n >= 4, with a(0) = 1, a(1) = 50, a(2) = 190, a(3) = 400. %F A349808 G.f.: (21*x^3-43*x^2-47*x-1)/(x-1)^3. %F A349808 This sequence is most easily analyzed via the transition matrix M described in the Maple program. %p A349808 with(LinearAlgebra): %p A349808 M:=Matrix(5,5,[ [1,4,10,18,35], [0,0,0,6,7], [0,0,1,0,7], [0,0,0,0,0], [0,0,0,0,1]]); %p A349808 v:=Matrix(5,1,[ [0], [0], [0], [0], [1]]); u:=Matrix(1,5,[1,1,1,1,1]); %p A349808 A349808:=n->(u.M^n.v)[1,1]; %Y A349808 Row 7 of the array in A350000. %K A349808 nonn %O A349808 0,2 %A A349808 _Scott R. Shannon_ and _N. J. A. Sloane_, Dec 06 2021