This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349811 #9 Dec 23 2021 12:08:32 %S A349811 1,1,1,4,3,2,41,24,14,109,60,33,4,2,1,23,11,5,89,40,18,110,48,21,94, %T A349811 40,17,29,12,5,5401,2190,888,324,126,49,14,5,2,22,8,3,1705,618,224, %U A349811 793,283,101,2166673601,761875860,267901370 %N A349811 Table of triples read by rows: the fundamental unit of the purely real cubic field Q(m^(1/3)), m = A349810(n), is (T(n,0) + T(n,1)*x + T(n,2)*x^2)/d, where x = m^(1/3) and d is a small integer, usually 1. %C A349811 The denominator d is 1 with the following exceptions: 3 for m=10, 2 for m=12, 3 for m=19, 2 for m=20, and so on. %C A349811 Wada's table extends to m=249. %H A349811 Hideo Wada, <a href="https://doi.org/10.3792/pja/1195526509">A table of fundamental units of purely cubic fields</a>, Proc. Japan Acad. 46 (1970), 1135-1140. [Math. Rev. MR0294292] %e A349811 The table begins as follows (the denominator d has been included if it is not 1, and m = A349810(n)): %e A349811 n m (T(n,0) T(n,1) T(n,2))/d %e A349811 1 2 1, 1, 1, %e A349811 2 3 4, 3, 2, %e A349811 3 5 41, 24, 14, %e A349811 4 6 109, 60, 33, %e A349811 5 7 4, 2, 1, %e A349811 6 10 (23, 11, 5)/3, %e A349811 7 11 89, 40, 18, %e A349811 8 12 (110, 48, 21)/2, %e A349811 9 13 94, 40, 17, %e A349811 10 14 29, 12, 5, %e A349811 11 15 5401, 2190, 888, %e A349811 12 17 324, 126, 49, %e A349811 13 19 (14, 5, 2)/3, %e A349811 14 20 (22, 8, 3)/2, %e A349811 15 21 1705, 618, 224, %e A349811 16 22 793, 283, 101, %e A349811 17 23 2166673601, 761875860, 267901370, %e A349811 ... %Y A349811 Cf. A349810. %K A349811 nonn,tabf %O A349811 1,4 %A A349811 _N. J. A. Sloane_, Dec 22 2021