This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349812 #24 Dec 24 2021 13:27:03 %S A349812 1,-1,0,1,-1,-1,0,1,1,-1,-2,-2,0,2,2,1,-1,-3,-5,-4,0,4,5,3,1,-1,-4,-9, %T A349812 -12,-9,0,9,12,9,4,1,-1,-5,-14,-25,-30,-21,0,21,30,25,14,5,1,-1,-6, %U A349812 -20,-44,-69,-76,-51,0,51,76,69,44,20,6,1,-1,-7,-27,-70,-133,-189,-196,-127,0,127,196,189,133,70,27,7,1 %N A349812 Triangle read by rows: row 1 is [1]; for n >= 1, row n gives coefficients of expansion of (-1/x + x)*(1/x + 1 + x)^(n-1) in order of increasing powers of x. %C A349812 The rule for constructing this triangle (ignoring row 0) is the same as that for A027907: each number is the sum of the three numbers immediately above it in the previous row. Here row 1 is [-1, 0, 1] instead of [1, 1, 1]. %H A349812 Jack Ramsay, <a href="/A349812/a349812.pdf">On Arithmetical Triangles</a>, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.] %e A349812 Triangle begins: %e A349812 1; %e A349812 -1, 0, 1; %e A349812 -1, -1, 0, 1, 1; %e A349812 -1, -2, -2, 0, 2, 2, 1; %e A349812 -1, -3, -5, -4, 0, 4, 5, 3, 1; %e A349812 -1, -4, -9, -12, -9, 0, 9, 12, 9, 4, 1; %e A349812 -1, -5, -14, -25, -30, -21, 0, 21, 30, 25, 14, 5, 1; %e A349812 -1, -6, -20, -44, -69, -76, -51, 0, 51, 76, 69, 44, 20, 6, 1; %e A349812 -1, -7, -27, -70, -133, -189, -196, -127, 0, 127, 196, 189, 133, 70, 27, 7, 1; %e A349812 ... %p A349812 t1:=-1/x+x; m:=1/x+1+x; %p A349812 lprint([1]); %p A349812 for n from 1 to 12 do %p A349812 w1:=expand(t1*m^(n-1)); %p A349812 w3:=expand(x^n*w1); %p A349812 w4:=series(w3,x,2*n+1); %p A349812 w5:=seriestolist(w4); %p A349812 lprint(w5); %p A349812 od: %Y A349812 Cf. A007318, A027907, A112467, A349813, A348815. %Y A349812 The left half of the triangle is A026300, the right half is A064189 (or A122896). The central (nonzero) column gives the Motzkin numbers A001006. %K A349812 sign,tabf %O A349812 0,11 %A A349812 _N. J. A. Sloane_, Dec 23 2021