This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349813 #26 Dec 24 2021 13:19:32 %S A349813 3,-3,-1,1,3,-3,-4,-3,0,3,4,3,-3,-7,-10,-10,-4,4,10,10,7,3,-3,-10,-20, %T A349813 -30,-31,-20,0,20,31,30,20,10,3,-3,-13,-33,-63,-91,-101,-81,-31,31,81, %U A349813 101,91,63,33,13,3,-3,-16,-49,-112,-200,-288,-336,-304,-182,0,182,304,336,288,200,112,49,16,3 %N A349813 Triangle read by rows: row 1 is [3]; for n >= 1, row n gives coefficients of expansion of (-3 - x + x^2 + 3*x^3)*(1 + x + x^2 + x^3)^(n-1) in order of increasing powers of x. %C A349813 The row polynomials can be further factorized, since -3 - x + x^2 + 3*x^3 = -(1-x)*(3 + 4*x + 3*x^2) and 1 + x + x^2 + x^3 = (1+x)*(1+x^2). %C A349813 The rule for constructing this triangle (ignoring row 0) is the same as that for A008287: each number is the sum of the four numbers immediately above it in the previous row. Here row 1 is [-3, -1, 1, 3] instead of [1, 1, 1, 1]. %H A349813 Jack Ramsay, <a href="/A349812/a349812.pdf">On Arithmetical Triangles</a>, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.] %e A349813 Triangle begins: %e A349813 3; %e A349813 -3, -1, 1, 3; %e A349813 -3, -4, -3, 0, 3, 4, 3; %e A349813 -3, -7, -10, -10, -4, 4, 10, 10, 7, 3; %e A349813 -3, -10, -20, -30, -31, -20, 0, 20, 31, 30, 20, 10, 3; %e A349813 -3, -13, -33, -63, -91, -101, -81, -31, 31, 81, 101, 91, 63, 33, 13, 3; %e A349813 ... %p A349813 t1:=-3-x+x^2+3*x^3; %p A349813 m:=1+x+x^2+x^3; %p A349813 lprint([3]); %p A349813 for n from 1 to 12 do %p A349813 w1:=expand(t1*m^(n-1)); %p A349813 w4:=series(w1,x,3*n+1); %p A349813 w5:=seriestolist(w4); %p A349813 lprint(w5); %p A349813 od: %Y A349813 Cf. A007318, A008287, A349812, A349815, A349819. %Y A349813 The right half of the triangle gives A349814. %K A349813 sign,tabf %O A349813 0,1 %A A349813 _N. J. A. Sloane_, Dec 23 2021