A349834 Expansion of sqrt(1 + 4*x)/(1 - 4*x).
1, 6, 22, 92, 358, 1460, 5756, 23288, 92294, 372036, 1478420, 5947272, 23671516, 95102088, 378922552, 1521039088, 6064766662, 24329781988, 97059838372, 389194630888, 1553243997172, 6226104229528, 24855484384072, 99604902663568, 397733491426972
Offset: 0
Keywords
Examples
Let C(n) denote the Catalan numbers. a(0) = 2^0 = 1; a(1) = 2^2 + 2^1 * C(0) = 6; a(2) = 2^4 + 2^3 * C(0) - 2^1 * C(1) = 22; a(3) = 2^6 + 2^5 * C(0) - 2^3 * C(1) + 2^1 * C(2) = 92; a(4) = 2^8 + 2^7 * C(0) - 2^5 * C(1) + 2^3 * C(2) - 2^1 * C(3) = 358.
Links
- Wikipedia, Cauchy product
Programs
-
PARI
C(n) = binomial(2*n, n)/(n+1) a(n) = 2^(2*n) + sum(k=0, n-1, (-1)^k * 2^(2*n-1-2*k) * C(k))
Formula
a(n) = 2^(2*n) + (Sum_{k=0..n-1} (-1)^k * 2^(2*n-1-2*k) * CatalanNumber(k)).
a(n) = 2^(2*n + 1/2) - ((-1)^n * CatalanNumber(n) * hypergeom([1, n + 1/2], [n + 2], -1)) / 2. - Peter Luschny, Dec 03 2021
D-finite with recurrence n*a(n) -6*a(n-1) +8*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Jul 27 2022
Comments