cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349841 Triangle T(n,k) built by placing all ones on the left edge, [1,0,0,0,0] repeated on the right edge, and filling the body using the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 1, 1, 5, 10, 10, 5, 2, 0, 1, 6, 15, 20, 15, 7, 2, 0, 1, 7, 21, 35, 35, 22, 9, 2, 0, 1, 8, 28, 56, 70, 57, 31, 11, 2, 0, 1, 9, 36, 84, 126, 127, 88, 42, 13, 2, 1
Offset: 0

Views

Author

Michael A. Allen, Dec 13 2021

Keywords

Comments

This is the m=5 member in the sequence of triangles A007318, A059259, A118923, A349839, A349841 which have all ones on the left side, ones separated by m-1 zeros on the other side, and whose interiors obey Pascal's recurrence.
T(n,k) is the (n,n-k)-th entry of the (1/(1-x^5),x/(1-x)) Riordan array.
For n>0, T(n,n-1) = A002266(n+4).
For n>1, T(n,n-2) = A008732(n-2).
For n>2, T(n,n-3) = A122047(n-1).
Sums of rows give A349842.
Sums of antidiagonals give A349843.

Examples

			Triangle begins:
  1;
  1,   0;
  1,   1,   0;
  1,   2,   1,   0;
  1,   3,   3,   1,   0;
  1,   4,   6,   4,   1,   1;
  1,   5,  10,  10,   5,   2,   0;
  1,   6,  15,  20,  15,   7,   2,   0;
  1,   7,  21,  35,  35,  22,   9,   2,   0;
  1,   8,  28,  56,  70,  57,  31,  11,   2,   0;
  1,   9,  36,  84, 126, 127,  88,  42,  13,   2,   1;
		

Crossrefs

Other members of sequence of triangles: A007318, A059259, A118923, A349839.

Programs

  • Mathematica
    Flatten[Table[CoefficientList[Series[(1 - x*y)/((1 - (x*y)^5)(1 - x - x*y)), {x, 0, 20}, {y, 0, 10}], {x, y}][[n+1,k+1]],{n,0,10},{k,0,n}]]

Formula

G.f.: (1-x*y)/((1-(x*y)^5)(1-x-x*y)) in the sense that T(n,k) is the coefficient of x^n*y^k in the series expansion of the g.f.
T(n,0) = 1.
T(n,n) = delta(n mod 5,0).
T(n,1) = n-1 for n>0.
T(n,2) = (n-1)*(n-2)/2 for n>1.
T(n,3) = (n-1)*(n-2)*(n-3)/6 for n>2.
T(n,4) = (n-1)*(n-2)*(n-3)*(n-4)/24 for n>3.
T(n,5) = C(n-1,5) + 1 for n>4.
T(n,6) = C(n-1,6) + n - 6 for n>5.
For 0 <= k < n, T(n,k) = (n-k)*Sum_{j=0..floor(k/5)} binomial(n-5*j,n-k)/(n-5*j).
The g.f. of the n-th subdiagonal is 1/((1-x^5)(1-x)^n).

A349840 The number of compositions of n using elements from the set {1,3,5,7,8}.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 22, 35, 56, 91, 147, 238, 385, 623, 1009, 1632, 2640, 4272, 6912, 11184, 18096, 29280, 47377, 76657, 124033, 200690, 324723, 525413, 850136, 1375549, 2225686, 3601235, 5826920, 9428155
Offset: 0

Views

Author

Michael A. Allen, Dec 05 2021

Keywords

Comments

Number of ways to tile an n-board (an n X 1 array of 1 X 1 cells) using squares, trominoes, pentominoes, heptominoes, and octominoes.
Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-1,0,2,4,6,7} for all i=1,...,n.
a(n) gives the sums of the antidiagonals of A349839.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), North-Holland, Amsterdam, 1970, pp. 755-770.

Crossrefs

Sums of antidiagonals of triangles in the same family as A349839: A000045, A006498, A079962, A349843.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x-x^3-x^5-x^7-x^8),{x,0,35}],x]

Formula

a(n) = a(n-1) + a(n-3) + a(n-5) + a(n-7) + a(n-8) + delta(n,0), a(n<0)=0 (where delta(i,j) is the Kronecker delta).
a(n) = a(n-1) + a(n-2) + a(n-8) - a(n-9) - a(n-10) + delta(n,0) - delta(n,2), a(n<0)=0.
G.f.: 1/(1-x-x^3-x^5-x^7-x^8).
Showing 1-2 of 2 results.