cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349850 Decimal expansion of Sum_{k>=1} H(k)*F(k)/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and F(k) = A000045(k) is the k-th Fibonacci number.

Original entry on oeis.org

3, 9, 6, 8, 7, 4, 8, 0, 0, 6, 9, 0, 3, 9, 1, 4, 8, 5, 2, 1, 7, 1, 0, 6, 3, 6, 4, 0, 6, 1, 9, 9, 8, 5, 6, 8, 8, 6, 9, 8, 4, 2, 4, 3, 6, 3, 9, 6, 2, 2, 4, 8, 4, 3, 6, 7, 8, 3, 3, 9, 6, 6, 4, 2, 9, 4, 2, 1, 5, 4, 5, 3, 6, 7, 0, 6, 1, 8, 1, 1, 9, 9, 3, 8, 0, 6, 6, 8, 2, 4, 2, 1, 7, 6, 1, 5, 7, 1, 0, 7, 5, 2, 1, 9, 8
Offset: 1

Views

Author

Amiram Eldar, Dec 02 2021

Keywords

Examples

			3.96874800690391485217106364061998568869842436396224...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2*Log[2] + 12*Log[GoldenRatio]/Sqrt[5], 10, 100][[1]]

Formula

Equals log(4*phi^(12/sqrt(5))) = 2*log(2) + 12*log(phi)/sqrt(5), where phi is the golden ratio (A001622).

A351794 Decimal expansion of Sum_{k>=1} AH(k)*L(k)/2^k, where AH(k) = A058313(k)/A058312(k) is the k-th alternating harmonic number and L(k) = A000032(k) is the k-th Lucas number.

Original entry on oeis.org

2, 8, 2, 1, 4, 7, 5, 3, 5, 8, 7, 6, 2, 6, 4, 9, 4, 6, 1, 7, 4, 6, 0, 5, 1, 4, 3, 5, 6, 8, 2, 5, 3, 0, 6, 3, 7, 2, 4, 6, 6, 5, 6, 6, 6, 9, 3, 4, 5, 4, 6, 9, 9, 1, 4, 7, 9, 8, 8, 9, 4, 1, 3, 7, 4, 2, 4, 9, 8, 1, 3, 0, 8, 6, 1, 0, 4, 6, 4, 8, 0, 7, 0, 6, 2, 6, 7, 2, 9, 9, 5, 7, 8, 7, 1, 2, 6, 4, 8, 4, 1, 7, 9, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2022

Keywords

Examples

			2.82147535876264946174605143568253063724665666934546...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[3*Log[5/4] + 10*Log[GoldenRatio]/Sqrt[5], 10, 100][[1]]

Formula

Equals 3*log(5/4) + 10*log(phi)/sqrt(5), where phi is the golden ratio (A001622).
Equals (4/3)*log(5/4) + (5/3)*A351789.

A370743 Decimal expansion of Sum_{k>=2} H(k-1) * L(k) / (k*2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and L(k) = A000032(k) is the k-th Lucas number.

Original entry on oeis.org

1, 4, 0, 6, 7, 1, 2, 2, 9, 6, 2, 2, 6, 9, 7, 8, 9, 9, 4, 6, 5, 4, 8, 1, 8, 8, 1, 1, 2, 5, 2, 7, 9, 6, 0, 1, 1, 7, 9, 6, 1, 7, 8, 3, 5, 1, 7, 9, 1, 7, 4, 1, 0, 7, 0, 1, 2, 8, 0, 6, 9, 0, 4, 8, 3, 8, 2, 8, 4, 6, 7, 6, 4, 5, 2, 7, 6, 8, 1, 7, 2, 4, 1, 4, 0, 1, 6, 6, 4, 5, 1, 7, 8, 9, 4, 8, 0, 5, 7, 1, 1, 5, 5, 6, 8
Offset: 1

Views

Author

Amiram Eldar, Feb 29 2024

Keywords

Examples

			1.40671229622697899465481881125279601179617835179174...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[2]^2 + 4*Log[GoldenRatio]^2, 10, 120][[1]]
  • PARI
    log(2)^2 + 4*log(quadgen(5))^2

Formula

Equals log(2)^2 + 4*log(phi)^2, where phi is the golden ratio (A001622) (Davenport, 2018).
Showing 1-3 of 3 results.