cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349873 Smallest odd value such that any Collatz trajectory in which it occurs contains exactly n odd values other than '1'.

This page as a plain text file.
%I A349873 #60 Feb 08 2025 14:57:21
%S A349873 21,3,69,45,15,9,51,33,87,57,39,105,135,363,123,339,219,159,393,519,
%T A349873 681,897,603,111,297,1581,1053,351,933,621,207,549,183,243,645,429,
%U A349873 285,189,63,165,27,147,195,129,171,231,609,411,543,1449,975,327,873,1185,1527,1017
%N A349873 Smallest odd value such that any Collatz trajectory in which it occurs contains exactly n odd values other than '1'.
%C A349873 a(n) necessarily is the first odd term in any Collatz trajectory in which it occurs.
%H A349873 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%F A349873 a(n) mod 6 = 3 for all n>0. The odd multiples of 3 form the 'Garden-of-Eden' set (terms without a predecessor) under iterations of the reduced Collatz function A075677.
%e A349873 a(1)=21 as 21 occurs solely in Collatz trajectories starting with 21*2^k, and these trajectories all contain one single odd value other than 1. No value smaller than 21 satisfies these requirements. In particular, a(1) does not equal 5 since 5 is part of Collatz trajectories that contain multiple odd values other than 1 (e.g., ...,13,40,20,10,5,16,8,4,2,1).
%e A349873 a(2)=3 as 3 occurs solely in Collatz trajectories starting with 3*2^k, and these trajectories all contain exactly two odd values other than 1 (namely 3 and 5).
%o A349873 (PARI)
%o A349873 oddsteps(n)={my(s=0); while(n!=1, if(n%2,n=(3*n+1);s++); n/=2); s}
%o A349873 a(n)={forstep(k=3, oo, 6, if(oddsteps(k)==n, return(k)))} \\ _Andrew Howroyd_, Dec 19 2021
%o A349873 (PARI) oddsteps(n)=my(s); while(n>1, n+=n>>1+1; if(!bitand(n,1), n >>= valuation(n,2)); s++); s
%o A349873 first(n)=my(v=vector(n),r=n,t); forstep(k=3,oo,2, t=oddsteps(k); if(t<=n && v[t]==0, v[t]=k; if(r-- == 0, return(v)))) \\ _Charles R Greathouse IV_, Dec 22 2021
%Y A349873 Cf. A075677, A075680, A006667.
%Y A349873 All terms are in A016945.
%K A349873 nonn
%O A349873 1,1
%A A349873 _Johannes M.V.A. Koelman_, Dec 03 2021