This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349875 #20 Dec 08 2021 19:58:32 %S A349875 0,1,3,6,78,686999778,9876799878,89996788896,77779987999896, %T A349875 589598998999878,999699998689998991,9988894989978899995, %U A349875 95898999989999989765,999999966989999986978996 %N A349875 Triangular numbers whose mean digit value reaches a new maximum. %C A349875 Subsequence of A068808. %C A349875 No triangular number ends in 9, so the mean digit value is always less than 9. %C A349875 Is this sequence finite? Or does the mean digit value approach some upper limit arbitrarily closely without ever reaching it exactly, and, if so, what is that limit? %C A349875 a(14) <= 999999966989999986978996. - _David A. Corneth_, Dec 05 2021 %e A349875 n a(n) digit sum #dgts mean digit value %e A349875 -- -------------------- --------- ----- ---------------- %e A349875 1 0 0 1 0 %e A349875 2 1 1 1 1 %e A349875 3 3 3 1 3 %e A349875 4 6 6 1 6 %e A349875 5 78 15 2 7.5 %e A349875 6 686999778 69 9 7.66666666666... %e A349875 7 9876799878 78 10 7.8 %e A349875 8 89996788896 87 11 7.90909090909... %e A349875 9 77779987999896 111 14 7.92857142857... %e A349875 10 589598998999878 120 15 8 %e A349875 11 999699998689998991 145 18 8.05555555555... %e A349875 12 9988894989978899995 154 19 8.10526315789... %e A349875 13 95898999989999989765 163 20 8.15 %t A349875 seq = {}; max = -1; Do[If[(m = Mean @ IntegerDigits[(t = n*(n + 1)/2)]) > max, max = m; AppendTo[seq, t]], {n, 0, 10^6}]; seq (* _Amiram Eldar_, Dec 03 2021 *) %o A349875 (Python) %o A349875 def meandigval(n): s = str(n); return sum(map(int, s))/len(s) %o A349875 def afind(limit): %o A349875 alst, k, t, record = [], 0, 0, -1 %o A349875 while t <= limit: %o A349875 mdv = meandigval(t) %o A349875 if mdv > record: %o A349875 print(t, end=", ") %o A349875 record = mdv %o A349875 k += 1 %o A349875 t += k %o A349875 afind(10**14) # _Michael S. Branicky_, Dec 03 2021 %Y A349875 Cf. A000217, A068133, A068808, A069669, A069670, A095864. %K A349875 nonn,base,hard,more %O A349875 1,3 %A A349875 _Jon E. Schoenfield_, Dec 03 2021 %E A349875 a(14) verified by _Martin Ehrenstein_, Dec 06 2021