cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A350687 Primes of the form x^2 + (y^3 + z^3)^2 with x,y,z > 0.

Original entry on oeis.org

5, 13, 29, 53, 97, 173, 181, 229, 257, 277, 281, 293, 337, 617, 733, 757, 809, 881, 953, 1009, 1093, 1097, 1217, 1229, 1237, 1289, 1373, 1409, 1481, 1549, 1709, 1777, 1801, 1873, 1901, 2017, 2029, 2153, 2213, 2281, 2381, 2521, 2633
Offset: 1

Views

Author

Keywords

Comments

Merikoski proved that there are infinitely many primes of this form.

Crossrefs

Subsequence of A002144.

Programs

  • PARI
    listA003325(lim)=my(v=List()); lim\=1; for(x=1, sqrtnint(lim-1, 3), my(x3=x^3); for(y=1, min(sqrtnint(lim-x3, 3), x), listput(v, x3+y^3))); Set(v)
    list(lim)=lim\=1; my(v=List(),u=apply(sqr, listA003325(sqrtint(lim-1)))); for(x=1,sqrtint(lim-1), my(x2=x^2); for(i=1,#u, my(t=x2+u[i]); if(t>lim, break); if(isprime(t), listput(v,t)))); Set(v)
Showing 1-1 of 1 results.