A349903 Array read by ascending antidiagonals. Inverse Euler transform of the right-shifted k-bonacci numbers.
0, 0, 1, 0, 1, 0, 0, 1, 1, -1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, -1, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 3, 4, 0, 0, 0, 0, 0, 0, 1, 2, 6, 5, 0, 0, 0, 0, 0, 0, 0, 1, 4, 10, 8, 0, 0, 0, 0, 0, 0, 0, 1, 2, 7, 18, 11, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 14, 31, 18, 0, 0
Offset: 0
Examples
Array starts: [0] 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... [1] 0, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, ... [2] 0, 1, 1, 1, 2, 2, 4, 5, 8, 11, 18, 25, 40, ... [3] 0, 0, 1, 1, 2, 3, 6, 10, 18, 31, 56, 96, 172, ... [4] 0, 0, 0, 1, 1, 2, 4, 7, 14, 26, 50, 93, 178, ... [5] 0, 0, 0, 0, 1, 1, 2, 4, 8, 15, 30, 58, 114, ... [6] 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 31, 62, ... [7] 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, ... [8] 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, ... [9] 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, ... . Compare the rows with the columns of A349802.
Crossrefs
Programs
-
Maple
read transforms; F := proc(n, k) option remember; ifelse(k < 2, k, add(F(n, k-j), j = 1..min(n, k))) end: Frow := (n, len) -> [seq(0, j = 0..n-3), seq(F(n, k), k = 0..len)]: Arow := (n, len) -> EULERi(Frow(n, len)): for n from 0 to 9 do Arow(n, 14 - n) od;