This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349904 #19 Dec 07 2021 18:16:54 %S A349904 0,0,1,1,2,3,6,10,18,31,56,96,172,299,530,929,1646,2893,5126,9044, %T A349904 16028,28362,50328,89249,158598,281830,501538,892857,1591282,2837467, %U A349904 5064334,9044023,16163946,28906213,51729844,92628401,165967884,297541263,533731692,957921314 %N A349904 Inverse Euler transform of the tribonacci numbers A000073. %p A349904 read transforms; # https://oeis.org/transforms.txt %p A349904 arow := len -> EULERi([seq(A000073(n), n = 0..len)]): arow(39); %p A349904 # second Maple program: %p A349904 t:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3]: %p A349904 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A349904 add(binomial(a(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i))) %p A349904 end: %p A349904 a:= proc(n) option remember; t(n-1)-b(n, n-1) end: %p A349904 seq(a(n), n=1..40); # _Alois P. Heinz_, Dec 05 2021 %t A349904 (* EulerInvTransform is defined in A022562. *) %t A349904 EulerInvTransform[LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 40]] %o A349904 (SageMath) %o A349904 def euler_invtrans(A) : %o A349904 L = []; M = [] %o A349904 for i in range(len(A)) : %o A349904 s = (i+1)*A[i] - sum(L[j-1]*A[i-j] for j in (1..i)) %o A349904 L.append(s) %o A349904 s = sum(moebius((i+1)/d)*L[d-1] for d in divisors(i+1)) %o A349904 M.append(s/(i + 1)) %o A349904 return M %o A349904 @cached_function %o A349904 def a(n): return a(n-1) + a(n-2) + a(n-3) if n > 2 else [0,0,1][n] %o A349904 print(euler_invtrans([a(n) for n in range(40)])) %o A349904 (Python) # After the Maple program of _Alois P. Heinz_. %o A349904 from functools import cache %o A349904 from math import comb %o A349904 def binomial(n, k): %o A349904 if n == -1: return 1 %o A349904 return comb(n, k) %o A349904 @cache %o A349904 def A000073(n): %o A349904 if n <= 1: return 0 %o A349904 if n == 2: return 1 %o A349904 return A000073(n-1) + A000073(n-2) + A000073(n-3) %o A349904 @cache %o A349904 def b(n, i): %o A349904 if n == 0: return 1 %o A349904 if i < 1: return 0 %o A349904 return sum(binomial(a(i) + j - 1, j) * %o A349904 b(n - i * j, i - 1) for j in range(1 + n // i)) %o A349904 @cache %o A349904 def a(n): return (A000073(n - 1) - b(n, n - 1)) %o A349904 print([a(n) for n in range(1, 41)]) %o A349904 (PARI) %o A349904 InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))} %o A349904 seq(n) = InvEulerT(Vec(x^2/(1 - x - x^2 - x^3) + O(x^n), -n)) \\ _Andrew Howroyd_, Dec 05 2021 %Y A349904 Column k=2 of A349802. %Y A349904 Cf. A000073, A057597 (tribonacci numbers for n <= 0), A006206 and A060280. %Y A349904 Cf. A349903, A349977. %K A349904 nonn %O A349904 1,5 %A A349904 _Peter Luschny_, Dec 05 2021