cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349912 Sum of A336466 and its Dirichlet inverse, where A336466 is fully multiplicative with a(p) = oddpart(p-1).

This page as a plain text file.
%I A349912 #13 Dec 10 2021 22:55:57
%S A349912 2,0,0,1,0,2,0,1,1,2,0,1,0,6,2,1,0,1,0,1,6,10,0,1,1,6,1,3,0,0,0,1,10,
%T A349912 2,6,1,0,18,6,1,0,0,0,5,1,22,0,1,9,1,2,3,0,1,10,3,18,14,0,1,0,30,3,1,
%U A349912 6,0,0,1,22,0,0,1,0,18,1,9,30,0,0,1,1,10,0,3,2,42,14,5,0,1,18,11,30,46,18,1,0,9,5,1
%N A349912 Sum of A336466 and its Dirichlet inverse, where A336466 is fully multiplicative with a(p) = oddpart(p-1).
%H A349912 Antti Karttunen, <a href="/A349912/b349912.txt">Table of n, a(n) for n = 1..16384</a>
%F A349912 a(n) = A336466(n) + A349911(n).
%F A349912 a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A336466(d) * A349911(n/d).
%F A349912 a(4*n) = A336466(n).
%t A349912 f[p_, e_] := ((p-1)/2^IntegerExponent[p-1, 2])^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := s[n] + sinv[n]; Array[a, 100] (* _Amiram Eldar_, Dec 08 2021 *)
%o A349912 (PARI)
%o A349912 A000265(n) = (n>>valuation(n,2));
%o A349912 A336466(n) = { my(f=factor(n)); prod(k=1,#f~,A000265(f[k,1]-1)^f[k,2]); };
%o A349912 memoA349911 = Map();
%o A349912 A349911(n) = if(1==n,1,my(v); if(mapisdefined(memoA349911,n,&v), v, v = -sumdiv(n,d,if(d<n,A336466(n/d)*A349911(d),0)); mapput(memoA349911,n,v); (v)));
%o A349912 A349912(n) = (A336466(n)+A349911(n));
%Y A349912 Cf. A336466 (also a quadrisection of this sequence), A349911.
%Y A349912 Cf. also A322581.
%K A349912 nonn
%O A349912 1,1
%A A349912 _Antti Karttunen_, Dec 08 2021