This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349934 #15 Dec 10 2021 11:28:38 %S A349934 1,2,1,5,3,1,14,15,4,1,42,91,34,5,1,132,603,364,65,6,1,429,4213,4269, %T A349934 1085,111,7,1,1430,30537,52844,19845,2666,175,8,1,4862,227475,679172, %U A349934 383251,70146,5719,260,9,1,16796,1730787,8976188,7687615,1949156,204687,11096,369,10,1 %N A349934 Array read by ascending antidiagonals: A(n, s) is the n-th s-Catalan number. %H A349934 William Linz, <a href="https://arxiv.org/abs/2110.12095">s-Catalan numbers and Littlewood-Richardson polynomials</a>, arXiv:2110.12095 [math.CO], 2021. See p. 2. %F A349934 A(n, s) = T(2*n, s*n, s) - T(2*n, s*n+1, s), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n. %F A349934 A(2, n) = A000027(n+1). %F A349934 A(3, n) = A006003(n+1). %e A349934 The array begins: %e A349934 n\s | 1 2 3 4 5 %e A349934 ----+---------------------------- %e A349934 1 | 1 1 1 1 1 ... %e A349934 2 | 2 3 4 5 6 ... %e A349934 3 | 5 15 34 65 111 ... %e A349934 4 | 14 91 364 1085 2666 ... %e A349934 5 | 42 603 4269 19845 70146 ... %e A349934 ... %t A349934 T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; A[n_,s_]:=T[2n,s n,s]-T[2n,s n+1,s]; Flatten[Table[A[n-s+1,s],{n,10},{s,n}]] %o A349934 (PARI) T(n, k, s) = polcoef((sum(i=0, s, x^i))^n, k); %o A349934 A(n, s) = T(2*n, s*n, s) - T(2*n, s*n+1, s); \\ _Michel Marcus_, Dec 10 2021 %Y A349934 Cf. A000012 (n=1), A220892 (n=4). %Y A349934 Cf. A000108 (s=1), A099251 (s=2), A264607 (s=3). %Y A349934 Cf. A000027, A007318, A008287, A027907, A035343, A063260. %Y A349934 Cf. A349933. %K A349934 nonn,easy,tabl %O A349934 1,2 %A A349934 _Stefano Spezia_, Dec 06 2021